

 Navigation

 	
 index

 	
 next |

 	streamparse 3.2.0 documentation

[image: logo] 3.2.0

streamparse lets you run Python code against real-time streams of data.
Integrates with Apache Storm.

[image: https://travis-ci.org/Parsely/streamparse.svg?branch=master]
 [https://travis-ci.org/Parsely/streamparse]

	Quickstart

	Topologies

	API

	Developing Streamparse

	Frequently Asked Questions (FAQ)

[image: _images/quickstart.gif]

 Quickstart

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	streamparse 3.2.0 documentation

Quickstart

Dependencies

Java and Clojure

To run local and remote computation clusters, streamparse relies upon a JVM
technology called Apache Storm. The integration with this technology is
lightweight, and for the most part, you don’t need to think about it.

However, to get the library running, you’ll need

	JDK 7+, which you can install with apt-get, homebrew, or an installler;
and

	lein, which you can install from the
Leiningen project page [http://leiningen.org/] or
github [https://github.com/technomancy/leiningen#leiningen]

	Apache Storm development environment, which you can install from the
Storm project page [http://storm.apache.org/releases/current/Setting-up-development-environment.html]

You will need to have at least Apache Storm version 0.10.0 to cooperate with Streamparse.

Confirm that you have lein installed by running:

> lein version

You should get output similar to this:

Leiningen 2.3.4 on Java 1.7.0_55 Java HotSpot(TM) 64-Bit Server VM

Confirm that you have storm installed by running:

> storm version

You should get output similar to this:

Running: java -client -Ddaemon.name= -Dstorm.options= -Dstorm.home=/opt/apache-storm-1.0.1 -Dstorm.log.dir=/opt/apache-storm-1.0.1/logs -Djava.library.path=/usr/local/lib:/opt/local/lib:/usr/lib -Dstorm.conf.file= -cp /opt/apache-storm-1.0.1/lib/reflectasm-1.10.1.jar:/opt/apache-storm-1.0.1/lib/kryo-3.0.3.jar:/opt/apache-storm-1.0.1/lib/log4j-over-slf4j-1.6.6.jar:/opt/apache-storm-1.0.1/lib/clojure-1.7.0.jar:/opt/apache-storm-1.0.1/lib/log4j-slf4j-impl-2.1.jar:/opt/apache-storm-1.0.1/lib/servlet-api-2.5.jar:/opt/apache-storm-1.0.1/lib/disruptor-3.3.2.jar:/opt/apache-storm-1.0.1/lib/objenesis-2.1.jar:/opt/apache-storm-1.0.1/lib/storm-core-1.0.1.jar:/opt/apache-storm-1.0.1/lib/slf4j-api-1.7.7.jar:/opt/apache-storm-1.0.1/lib/storm-rename-hack-1.0.1.jar:/opt/apache-storm-1.0.1/lib/log4j-api-2.1.jar:/opt/apache-storm-1.0.1/lib/log4j-core-2.1.jar:/opt/apache-storm-1.0.1/lib/minlog-1.3.0.jar:/opt/apache-storm-1.0.1/lib/asm-5.0.3.jar:/opt/apache-storm-1.0.1/conf org.apache.storm.utils.VersionInfo
Storm 1.0.1
URL https://git-wip-us.apache.org/repos/asf/storm.git -r b5c16f919ad4099e6fb25f1095c9af8b64ac9f91
Branch (no branch)
Compiled by tgoetz on 2016-04-29T20:44Z
From source with checksum 1aea9df01b9181773125826339b9587e

	If lein isn’t installed,

	follow these directions to install it [http://leiningen.org/#install].

If storm isn’t installed,
follow these directions [http://storm.apache.org/releases/current/Setting-up-development-environment.html].

Once that’s all set, you install streamparse using pip:

> pip install streamparse

Your First Project

When working with streamparse, your first step is to create a project using
the command-line tool, sparse:

> sparse quickstart wordcount

Creating your wordcount streamparse project...
 create wordcount
 create wordcount/.gitignore
 create wordcount/config.json
 create wordcount/fabfile.py
 create wordcount/project.clj
 create wordcount/README.md
 create wordcount/src
 create wordcount/src/bolts/
 create wordcount/src/bolts/__init__.py
 create wordcount/src/bolts/wordcount.py
 create wordcount/src/spouts/
 create wordcount/src/spouts/__init__.py
 create wordcount/src/spouts/words.py
 create wordcount/topologies
 create wordcount/topologies/wordcount.py
 create wordcount/virtualenvs
 create wordcount/virtualenvs/wordcount.txt
Done.

Try running your topology locally with:

> cd wordcount
 sparse run

The quickstart project provides a basic wordcount topology example which you
can examine and modify. You can inspect the other commands that sparse
provides by running:

> sparse -h

If you see an error like:

Local Storm version, 1.0.1, is not the same as the version in your project.clj, 0.10.0. The versions must match.

You will have to edit your wordcount/project.clj file and change Apache Storm library version to match the one you have installed.

Project Structure

streamparse projects expect to have the following directory layout:

	File/Folder
	Contents

	config.json
	Configuration information for all of your topologies.

	fabfile.py
	Optional custom fabric tasks.

	project.clj
	leiningen project file (can be used to add external JVM dependencies).

	src/
	Python source files (bolts/spouts/etc.) for topologies.

	tasks.py
	Optional custom invoke tasks.

	topologies/
	Contains topology definitions written using the Topology DSL.

	virtualenvs/
	Contains pip requirements files used to install dependencies on remote Storm servers.

Defining Topologies

Storm’s services are Thrift-based and although it is possible to define a
topology in pure Python using Thrift. For details see Topology DSL.

Let’s have a look at the definition file created by using the
sparse quickstart command.

"""
Word count topology
"""

from streamparse import Grouping, Topology

from bolts.wordcount import WordCountBolt
from spouts.words import WordSpout

class WordCount(Topology):
 word_spout = WordSpout.spec()
 count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields('word')},
 par=2)

In the count_bolt bolt, we’ve told Storm that we’d like the stream of
input tuples to be grouped by the named field word. Storm offers
comprehensive options for
stream groupings [http://storm.apache.org/documentation/Concepts.html#stream-groupings],
but you will most commonly use a shuffle or fields grouping:

	Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks
in a way such that each bolt is guaranteed to get an equal number of tuples.
This is the default grouping if no other is specified.

	Fields grouping: The stream is partitioned by the fields specified in the
grouping. For example, if the stream is grouped by the “user-id” field,
tuples with the same “user-id” will always go to the same task, but tuples
with different “user-id”’s may go to different tasks.

There are more options to configure with spouts and bolts, we’d encourage you
to refer to our Topology DSL docs or
Storm’s Concepts [http://storm.apache.org/documentation/Concepts.html] for
more information.

Spouts and Bolts

The general flow for creating new spouts and bolts using streamparse is to add
them to your src folder and update the corresponding topology definition.

Let’s create a spout that emits sentences until the end of time:

import itertools

from streamparse.spout import Spout

class SentenceSpout(Spout):
 outputs = ['sentence']

 def initialize(self, stormconf, context):
 self.sentences = [
 "She advised him to take a long holiday, so he immediately quit work and took a trip around the world",
 "I was very glad to get a present from her",
 "He will be here in half an hour",
 "She saw him eating a sandwich",
]
 self.sentences = itertools.cycle(self.sentences)

 def next_tuple(self):
 sentence = next(self.sentences)
 self.emit([sentence])

 def ack(self, tup_id):
 pass # if a tuple is processed properly, do nothing

 def fail(self, tup_id):
 pass # if a tuple fails to process, do nothing

The magic in the code above happens in the initialize() and
next_tuple() functions. Once the spout enters the main run loop,
streamparse will call your spout’s initialize() method.
After initialization is complete, streamparse will continually call the spout’s
next_tuple() method where you’re expected to emit tuples that match
whatever you’ve defined in your topology definition.

Now let’s create a bolt that takes in sentences, and spits out words:

import re

from streamparse.bolt import Bolt

class SentenceSplitterBolt(Bolt):
 outputs = ['word']

 def process(self, tup):
 sentence = tup.values[0] # extract the sentence
 sentence = re.sub(r"[,.;!\?]", "", sentence) # get rid of punctuation
 words = [[word.strip()] for word in sentence.split(" ") if word.strip()]
 if not words:
 # no words to process in the sentence, fail the tuple
 self.fail(tup)
 return

 for word in words:
 self.emit([word])
 # tuple acknowledgement is handled automatically

The bolt implementation is even simpler. We simply override the default
process() method which streamparse calls when a tuple has been emitted by
an incoming spout or bolt. You are welcome to do whatever processing you would
like in this method and can further emit tuples or not depending on the purpose
of your bolt.

If your process() method completes without raising an Exception, streamparse
will automatically ensure any emits you have are anchored to the current tuple
being processed and acknowledged after process() completes.

If an Exception is raised while process() is called, streamparse
automatically fails the current tuple prior to killing the Python process.

Failed Tuples

In the example above, we added the ability to fail a sentence tuple if it did
not provide any words. What happens when we fail a tuple? Storm will send a
“fail” message back to the spout where the tuple originated from (in this case
SentenceSpout) and streamparse calls the spout’s
fail() method. It’s then up to your spout
implementation to decide what to do. A spout could retry a failed tuple, send
an error message, or kill the topology. See Dealing With Errors for
more discussion.

Bolt Configuration Options

You can disable the automatic acknowleding, anchoring or failing of tuples by
adding class variables set to false for: auto_ack, auto_anchor or
auto_fail. All three options are documented in
streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

 auto_ack = False
 auto_fail = False

 def process(self, tup):
 # do stuff...
 if error:
 self.fail(tup) # perform failure manually
 self.ack(tup) # perform acknowledgement manually

Handling Tick Tuples

Ticks tuples are built into Storm to provide some simple forms of
cron-like behaviour without actually having to use cron. You can
receive and react to tick tuples as timer events with your python
bolts using streamparse too.

The first step is to override process_tick() in your custom
Bolt class. Once this is overridden, you can set the storm option
topology.tick.tuple.freq.secs=<frequency> to cause a tick tuple
to be emitted every <frequency> seconds.

You can see the full docs for process_tick() in
streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

 def process_tick(self, freq):
 # An action we want to perform at some regular interval...
 self.flush_old_state()

Then, for example, to cause process_tick() to be called every
2 seconds on all of your bolts that override it, you can launch
your topology under sparse run by setting the appropriate -o
option and value as in the following example:

$ sparse run -o "topology.tick.tuple.freq.secs=2" ...

Remote Deployment

Setting up a Storm Cluster

See Storm’s Setting up a Storm Cluster [https://storm.apache.org/documentation/Setting-up-a-Storm-cluster.html].

Submit

When you are satisfied that your topology works well via testing with:

> sparse run -d

You can submit your topology to a remote Storm cluster using the command:

sparse submit [--environment <env>] [--name <topology>] [-dv]

Before submitting, you have to have at least one environment configured in your
project’s config.json file. Let’s create a sample environment called “prod”
in our config.json file:

{
 "serializer": "json",
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "prod": {
 "user": "storm",
 "nimbus": "storm1.my-cluster.com",
 "workers": [
 "storm1.my-cluster.com",
 "storm2.my-cluster.com",
 "storm3.my-cluster.com"
],
 "log": {
 "path": "/var/log/storm/streamparse",
 "file": "pystorm_{topology_name}_{component_name}_{task_id}_{pid}.log",
 "max_bytes": 100000,
 "backup_count": 10,
 "level": "info"
 },
 "use_ssh_for_nimbus": true,
 "virtualenv_root": "/data/virtualenvs/"
 }
 }
}

We’ve now defined a prod environment that will use the user storm when
deploying topologies. Before submitting the topology though, streamparse will
automatically take care of instaling all the dependencies your topology
requires. It does this by sshing into everyone of the nodes in the workers
config variable and building a virtualenv using the the project’s local
virtualenvs/<topology_name>.txt requirements file.

This implies a few requirements about the user you specify per environment:

	Must have ssh access to all servers in your Storm cluster

	Must have write access to the virtualenv_root on all servers in your
Storm cluster

streamparse also assumes that virtualenv is installed on all Storm servers.

Once an environment is configured, we could deploy our wordcount topology like
so:

> sparse submit

Seeing as we have only one topology and environment, we don’t need to specify
these explicitly. streamparse will now:

	Package up a JAR containing all your Python source files

	Build a virtualenv on all your Storm workers (in parallel)

	Submit the topology to the nimbus server

Disabling & Configuring Virtualenv Creation

If you do not have ssh access to all of the servers in your Storm cluster, but
you know they have all of the requirements for your Python code installed, you
can set "use_virtualenv" to false in config.json.

If you have virtualenvs on your machines that you would like streamparse to
use, but not update or manage, you can set "install_virtualenv" to false
in config.json.

If you would like to pass command-line flags to virtualenv, you can set
"virtualenv_flags" in config.json, for example:

"virtualenv_flags": "-p /path/to/python"

Note that this only applies when the virtualenv is created, not when an
existing virtualenv is used.

Using unofficial versions of Storm

If you wish to use streamparse with unofficial versions of storm (such as the HDP Storm)
you should set :repositories in your project.clj to point to the Maven repository
containing the JAR you want to use, and set the version in :dependencies to match
the desired version of Storm.

For example, to use the version supplied by HDP, you would set :repositories to:

:repositories {"HDP Releases" "http://repo.hortonworks.com/content/repositories/releases"}

Local Clusters

Streamparse assumes that your Storm cluster is not on your local machine. If it
is, such as the case with VMs or Docker images, change "use_ssh_for_nimbus"
in config.json to false.

Setting Submit Options in config.json

If you frequently use the same options to sparse submit in your project, you
can set them in config.json using the options key in your environment
settings. For example:

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "vagrant": {
 "user": "vagrant",
 "nimbus": "streamparse-box",
 "workers": [
 "streamparse-box"
],
 "virtualenv_root": "/data/virtualenvs",
 "options": {
 "topology.environment": {
 "LD_LIBRARY_PATH": "/usr/local/lib/"
 }
 }
 }
 }
}

You can also set the --worker and --acker parameters in config.json
via the worker_count and acker_count keys in your environment settings.

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "vagrant": {
 "user": "vagrant",
 "nimbus": "streamparse-box",
 "workers": [
 "streamparse-box"
],
 "virtualenv_root": "/data/virtualenvs",
 "acker_count": 1,
 "worker_count": 1
 }
 }
}

Logging

The Storm supervisor needs to have access to the log.path directory for
logging to work (in the example above, /var/log/storm/streamparse). If you
have properly configured the log.path option in your config, streamparse
will use the value for the log.file option to set up log files for each
Storm worker in this path. The filename can be customized further by using
certain named placeholders. The default filename is set to:

pystorm_{topology_name}_{component_name}_{task_id}_{pid}.log

Where:

	topology_name: is the topology.name variable set in Storm

	component_name: is the name of the currently executing component as defined in your topology definition file (.clj file)

	task_id: is the task ID running this component in the topology

	pid: is the process ID of the Python process

streamparse uses Python’s logging.handlers.RotatingFileHandler and by
default will only save 10 1 MB log files (10 MB in total), but this can be
tuned with the log.max_bytes and log.backup_count variables.

The default logging level is set to INFO, but if you can tune this with the
log.level setting which can be one of critical, error, warning, info or
debug. Note that if you perform sparse run or sparse submit with
the --debug set, this will override your log.level setting and set the
log level to debug.

When running your topology locally via sparse run, your log path will be
automatically set to /path/to/your/streamparse/project/logs.

 Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

 Topologies

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	streamparse 3.2.0 documentation

New in version 3.0.0.

Topologies

Storm topologies are described as a Directed Acyclic Graph (DAG) of Storm
components, namely bolts and spouts.

Topology DSL

To simplify the process of creating Storm topologies, streamparse features a
Python Topology DSL [https://en.wikipedia.org/wiki/Domain-specific_language].
It lets you specify topologies as complex as those you can in Java [https://github.com/apache/storm/blob/07629c1f898ebb0cedcc19e15e4813692b6a9345/examples/storm-starter/src/jvm/org/apache/storm/starter/WordCountTopology.java]
or Clojure [https://github.com/apache/storm/blob/07629c1f898ebb0cedcc19e15e4813692b6a9345/examples/storm-starter/src/clj/org/apache/storm/starter/clj/word_count.clj],
but in concise, readable Python.

Topology files are located in topologies in your streamparse project folder.
There can be any number of topology files for your project in this directory.

	topologies/my_topology.py

	topologies/my_other_topology.py

	topologies/my_third_topology.py

	...

A valid Topology may only have Bolt
and Spout attributes.

Simple Python Example

The first step to putting together a topology, is creating the bolts and spouts,
so let’s assume we have the following bolt and spout:

from collections import Counter

from redis import StrictRedis

from streamparse import Bolt

class WordCountBolt(Bolt):
 outputs = ['word', 'count']

 def initialize(self, conf, ctx):
 self.counter = Counter()
 self.total = 0

 def _increment(self, word, inc_by):
 self.counter[word] += inc_by
 self.total += inc_by

 def process(self, tup):
 word = tup.values[0]
 self._increment(word, 10 if word == "dog" else 1)
 if self.total % 1000 == 0:
 self.logger.info("counted %i words", self.total)
 self.emit([word, self.counter[word]])

class RedisWordCountBolt(WordCountBolt):
 def initialize(self, conf, ctx):

from itertools import cycle

from streamparse import Spout

class WordSpout(Spout):
 outputs = ['word']

 def initialize(self, stormconf, context):
 self.words = cycle(['dog', 'cat', 'zebra', 'elephant'])

 def next_tuple(self):
 word = next(self.words)
 self.emit([word])

One important thing to note is that we have added an outputs attribute to
these classes, which specify the names of the output fields that will be
produced on their default streams. If we wanted to specify multiple
streams, we could do that by specifying a list of Stream
objects.

Now let’s hook up the bolt to read from the spout:

"""
Word count topology (in memory)
"""

from streamparse import Grouping, Topology

from bolts import WordCountBolt
from spouts import WordSpout

class WordCount(Topology):
 word_spout = WordSpout.spec()
 count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields('word')},
 par=2)

Note

Your project’s src directory gets added to sys.path before your
topology is imported, so you should use absolute imports based on that.

As you can see, streamparse.Bolt.spec() and
streamparse.Spout.spec() methods allow us to specify information about
the components in your topology and how they connect to each other. Their
respective docstrings outline all of the possible ways they can be used.

Java Components

The topology DSL fully supports JVM-based bolts and spouts via the
JavaBolt and JavaSpout classes.

Here’s an example of how we would use the
Storm Kafka Spout [http://storm.apache.org/releases/current/storm-kafka.html]:

"""
Pixel count topology
"""

from streamparse import Grouping, JavaSpout, Topology

from bolts.pixel_count import PixelCounterBolt
from bolts.pixel_deserializer import PixelDeserializerBolt

class PixelCount(Topology):
 pixel_spout = JavaSpout.spec(name="pixel-spout",
 full_class_name="pixelcount.spouts.PixelSpout",
 args_list=[],
 outputs=["pixel"])
 pixel_deserializer = PixelDeserializerBolt.spec(name='pixel-deserializer-bolt',
 inputs=[pixel_spout])
 pixel_counter = PixelCounterBolt.spec(name='pixel-count-bolt',
 inputs={pixel_deserializer:
 Grouping.fields('url')},
 config={"topology.tick.tuple.freq.secs": 1})

One limitation of the Thrift interface we use to send the topology to Storm is
that the constructors for Java components can only be passed basic Python data
types: bool, bytes, float, int, and str.

Components in Other Languages

If you have components that are written in languages other than Java or Python,
you can have those as part of your topology as well—assuming you’re using the
corresponding multi-lang library for that language.

To do that you just need to use the streamparse.ShellBolt.spec() and
streamparse.ShellSpout.spec() methods. They take command and
script arguments to specify a binary to run and its string-separated
arguments.

Multiple Streams

To specify that a component has multiple output streams, instead of using a
list of strings for outputs,
you must specify a list of Stream objects, as shown below.

class FancySpout(Spout):
 outputs = [Stream(fields=['good_data'], name='default'),
 Stream(fields=['bad_data'], name='errors')]

To select one of those streams as the input for a downstream
Bolt, you simply use [] to specify the stream you
want. Without any stream specified, the default stream will be used.

class ExampleTopology(Topology):
 fancy_spout = FancySpout.spec()
 error_bolt = ErrorBolt.spec(inputs=[fancy_spout['errors']])
 process_bolt = ProcessBolt.spec(inputs=[fancy_spout])

Groupings

By default, Storm uses a SHUFFLE grouping to route
tuples to particular executors for a given component, but you can also specify
other groupings by using the appropriate Grouping
attribute. The most common grouping is probably the
fields() grouping, which will send all the tuples
with the same value for the specified fields to the same executor. This can be
seen in the prototypical word count topology:

"""
Word count topology (in memory)
"""

from streamparse import Grouping, Topology

from bolts import WordCountBolt
from spouts import WordSpout

class WordCount(Topology):
 word_spout = WordSpout.spec()
 count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields('word')},
 par=2)

Topology-Level Configuration

If you want to set a config option for all components in your topology, like
topology.environment, you can do that by adding a config class attribute
to your Topology that is a dict mapping from option
names to their values. For example:

class WordCount(Topology):
 config = {'topology.environment': {'LD_LIBRARY_PATH': '/usr/local/lib/'}}
 ...

Running Topologies

What Streamparse Does

When you run a topology either locally or by submitting to a cluster,
streamparse will

	Bundle all of your code into a JAR

	Build a Thrift Topology struct out of your Python topology definition.

	Pass the Thrift Topology struct to Nimbus on your Storm cluster.

If you invoked streamparse with sparse run, your code is executed directly
from the src/ directory.

If you submitted to a cluster with sparse submit, streamparse uses lein
to compile the src directory into a jar file, which is run on the
cluster. Lein uses the project.clj file located in the root of your
project. This file is a standard lein project file and can be customized
according to your needs.

Dealing With Errors

When detecting an error, bolt code can call its fail()
method in order to have Storm call the respective spout’s
fail() method. Known error/failure cases result in
explicit callbacks to the spout using this approach.

Exceptions which propagate without being caught will cause the component to
crash. On sparse run, the entire topology will stop execution. On a running
cluster (i.e. sparse submit), Storm will auto-restart the crashed component
and the spout will receive a fail() call.

If the spout’s fail handling logic is to hold back the tuple and not re-emit
it, then things will keep going. If it re-emits it, then it may crash that
component again. Whether the topology is tolerant of the failure depends on how
you implement failure handling in your spout.

Common approaches are to:

	Append errant tuples to some sort of error log or queue for manual inspection
later, while letting processing continue otherwise.

	Attempt 1 or 2 retries before considering the tuple a failure, if the error
was likely an transient problem.

	Ignore the failed tuple, if appropriate to the application.

Parallelism and Workers

In general, use the ``par`` “parallelism hint” parameter per spout and bolt in
your configuration to control the number of Python processes per component.

Reference: Understanding the Parallelism of a Storm Topology [https://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html]

Storm parallelism entities:

	A worker process is a JVM, i.e. a Java process.

	An executor is a thread that is spawned by a worker process.

	A task performs the actual data processing.
(To simplify, you can think of it as a Python callable.)

Spout and bolt specs take a par keyword to provide a parallelism hint to
Storm for the number of executors (threads) to use for the given spout/bolt;
for example, par=2 is a hint to use two executors. Because streamparse
implements spouts and bolts as independent Python processes, setting par=N
results in N Python processes for the given spout/bolt.

Many streamparse applications will need only to set this parallelism hint to
control the number of resulting Python processes when tuning streamparse
configuration. For the underlying topology workers, streamparse sets a default
of 2 workers, which are independent JVM processes for Storm. This allows a
topology to continue running when one worker process dies; the other is around
until the dead process restarts.

Both sparse run and sparse sumbit accept a -p N command-line flag
to set the number of topology workers to N. For convenience, this flag also
sets the number of Storm’s underlying messaging reliability [https://storm.apache.org/documentation/Guaranteeing-message-processing.html]
acker bolts to the same N value. In the event that you need it (and you
understand Storm ackers), use the -a and -w command-line flags instead
of -p to control the number of acker bolts and the number of workers,
respectively. The sparse command does not support Storm’s rebalancing
features; use sparse submit -f -p N to kill the running topology and
redeploy it with N workers.

Note that the underlying Storm thread implementation [https://storm.apache.org/2012/08/02/storm080-released.html],
LMAX Disruptor [http://lmax-exchange.github.io/disruptor/], is designed with
high-performance inter-thread messaging as a goal. Rule out Python-level issues
when tuning your topology:

	bottlenecks where the number of spout and bolt processes are out of balance

	serialization/deserialization overhead of more data emitted than you need

	slow routines/callables in your code

 Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

 API

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	streamparse 3.2.0 documentation

API

Tuples

	
class streamparse.Tuple(id, component, stream, task, values)

	Storm’s primitive data type passed around via streams.

	Variables:	
	id [http://docs.python.org/library/functions.html#id] – the ID of the Tuple.

	component – component that the Tuple was generated from.

	stream – the stream that the Tuple was emitted into.

	task – the task the Tuple was generated from.

	values – the payload of the Tuple where data is stored.

You should never have to instantiate an instance of a
streamparse.Tuple yourself as streamparse handles this for you
prior to, for example, a streamparse.Bolt‘s process() method
being called.

None of the emit methods for bolts or spouts require that you pass a
streamparse.Tuple instance.

Components

Both streamparse.Bolt and streamparse.Spout inherit from a
common base-class, streamparse.storm.component.Component. It extends
pystorm’s code for handling Multi-Lang IPC between Storm and Python [https://storm.apache.org/documentation/Multilang-protocol.html]
and adds suport for our Python Topology DSL.

Spouts

Spouts are data sources for topologies, they can read from any data source and
emit tuples into streams.

	
class streamparse.Spout(input_stream=<open file '<stdin>', mode 'r'>, output_stream=<open file '<stdout>', mode 'w'>, rdb_signal=10, serializer=u'json')[source]

	Bases: pystorm.spout.Spout, streamparse.storm.spout.ShellSpout

pystorm Spout with streamparse-specific additions

	
ack(tup_id)[source]

	Called when a bolt acknowledges a Tuple in the topology.

	Parameters:	tup_id (str [http://docs.python.org/library/functions.html#str]) – the ID of the Tuple that has been fully acknowledged in
the topology.

	
emit(tup, tup_id=None, stream=None, direct_task=None, need_task_ids=False)[source]

	Emit a spout Tuple message.

	Parameters:	
	tup (list or tuple) – the Tuple to send to Storm, should contain only
JSON-serializable data.

	tup_id (str [http://docs.python.org/library/functions.html#str]) – the ID for the Tuple. Leave this blank for an
unreliable emit.

	stream (str [http://docs.python.org/library/functions.html#str]) – ID of the stream this Tuple should be emitted to.
Leave empty to emit to the default stream.

	direct_task (int [http://docs.python.org/library/functions.html#int]) – the task to send the Tuple to if performing a
direct emit.

	need_task_ids (bool [http://docs.python.org/library/functions.html#bool]) – indicate whether or not you’d like the task IDs
the Tuple was emitted (default: False).

	Returns:	None, unless need_task_ids=True, in which case it will
be a list of task IDs that the Tuple was sent to if. Note
that when specifying direct_task, this will be equal to
[direct_task].

	
fail(tup_id)[source]

	Called when a Tuple fails in the topology

A spout can choose to emit the Tuple again or ignore the fail. The
default is to ignore.

	Parameters:	tup_id (str [http://docs.python.org/library/functions.html#str]) – the ID of the Tuple that has failed in the topology
either due to a bolt calling fail() or a Tuple
timing out.

	
initialize(storm_conf, context)

	Called immediately after the initial handshake with Storm and before
the main run loop. A good place to initialize connections to data
sources.

	Parameters:	
	storm_conf (dict [http://docs.python.org/library/stdtypes.html#dict]) – the Storm configuration for this component. This is
the configuration provided to the topology, merged in
with cluster configuration on the worker node.

	context (dict [http://docs.python.org/library/stdtypes.html#dict]) – information about the component’s place within the
topology such as: task IDs, inputs, outputs etc.

	
is_heartbeat(tup)

	

	Returns:	Whether or not the given Tuple is a heartbeat

	
log(message, level=None)

	Log a message to Storm optionally providing a logging level.

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – the log message to send to Storm.

	level (str [http://docs.python.org/library/functions.html#str]) – the logging level that Storm should use when writing the
message. Can be one of: trace, debug, info, warn, or
error (default: info).

Warning

This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using
Component.logger and not setting pystorm.log.path, because
that will use a pystorm.component.StormHandler to do the
filtering on the Python side (instead of on the Java side after taking
the time to serialize your message and send it to Storm).

	
next_tuple()[source]

	Implement this function to emit Tuples as necessary.

This function should not block, or Storm will think the
spout is dead. Instead, let it return and pystorm will
send a noop to storm, which lets it know the spout is functioning.

	
raise_exception(exception, tup=None)

	Report an exception back to Storm via logging.

	Parameters:	
	exception – a Python exception.

	tup – a Tuple object.

	
read_handshake()

	Read and process an initial handshake message from Storm.

	
read_message()

	Read a message from Storm via serializer.

	
report_metric(name, value)

	Report a custom metric back to Storm.

	Parameters:	
	name – Name of the metric. This can be anything.

	value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

	
run()

	Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off
to subclasses. Any exceptions are caught and logged back to Storm
prior to the Python process exiting.

Warning

Subclasses should not override this method.

	
send_message(message)

	Send a message to Storm via stdout.

	
classmethod spec(name=None, par=None, config=None)[source]

	Create a ShellBoltSpec for a Python Spout.

This spec represents this Spout in a Topology.

	Parameters:	
	name (str) – Name of this Spout. Defaults to name of
Topology attribute this is assigned
to.

	par (int) – Parallelism hint for this Spout. For Python
Components, this works out to be the number of Python
processes running it in the the topology (across all
machines). See Parallelism and Workers.

Note

This can also be specified as an attribute of your
Spout subclass.

	config (dict) – Component-specific config settings to pass to Storm.

Note

This can also be specified as an attribute of your
Spout subclass.

Note

This method does not take a outputs argument because
outputs should be an attribute of your Spout subclass.

Bolts

	
class streamparse.Bolt(*args, **kwargs)[source]

	Bases: pystorm.bolt.Bolt, streamparse.storm.bolt.ShellBolt

pystorm Bolt with streamparse-specific additions

	
ack(tup)[source]

	Indicate that processing of a Tuple has succeeded.

	Parameters:	tup (str [http://docs.python.org/library/functions.html#str] or pystorm.component.Tuple) – the Tuple to acknowledge.

	
emit(tup, stream=None, anchors=None, direct_task=None, need_task_ids=False)[source]

	Emit a new Tuple to a stream.

	Parameters:	
	tup (list [http://docs.python.org/library/functions.html#list] or pystorm.component.Tuple) – the Tuple payload to send to Storm, should contain only
JSON-serializable data.

	stream (str [http://docs.python.org/library/functions.html#str]) – the ID of the stream to emit this Tuple to. Specify
None to emit to default stream.

	anchors (list [http://docs.python.org/library/functions.html#list]) – IDs the Tuples (or pystorm.component.Tuple
instances) which the emitted Tuples should be anchored
to. If auto_anchor is set to True and
you have not specified anchors, anchors will be
set to the incoming/most recent Tuple ID(s).

	direct_task (int [http://docs.python.org/library/functions.html#int]) – the task to send the Tuple to.

	need_task_ids (bool [http://docs.python.org/library/functions.html#bool]) – indicate whether or not you’d like the task IDs
the Tuple was emitted (default: False).

	Returns:	None, unless need_task_ids=True, in which case it will
be a list of task IDs that the Tuple was sent to if. Note
that when specifying direct_task, this will be equal to
[direct_task].

	
fail(tup)[source]

	Indicate that processing of a Tuple has failed.

	Parameters:	tup (str [http://docs.python.org/library/functions.html#str] or pystorm.component.Tuple) – the Tuple to fail (its id if str).

	
initialize(storm_conf, context)

	Called immediately after the initial handshake with Storm and before
the main run loop. A good place to initialize connections to data
sources.

	Parameters:	
	storm_conf (dict [http://docs.python.org/library/stdtypes.html#dict]) – the Storm configuration for this component. This is
the configuration provided to the topology, merged in
with cluster configuration on the worker node.

	context (dict [http://docs.python.org/library/stdtypes.html#dict]) – information about the component’s place within the
topology such as: task IDs, inputs, outputs etc.

	
is_heartbeat(tup)

	

	Returns:	Whether or not the given Tuple is a heartbeat

	
is_tick(tup)[source]

	

	Returns:	Whether or not the given Tuple is a tick Tuple

	
log(message, level=None)

	Log a message to Storm optionally providing a logging level.

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – the log message to send to Storm.

	level (str [http://docs.python.org/library/functions.html#str]) – the logging level that Storm should use when writing the
message. Can be one of: trace, debug, info, warn, or
error (default: info).

Warning

This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using
Component.logger and not setting pystorm.log.path, because
that will use a pystorm.component.StormHandler to do the
filtering on the Python side (instead of on the Java side after taking
the time to serialize your message and send it to Storm).

	
process(tup)[source]

	Process a single Tuple pystorm.component.Tuple of
input

This should be overridden by subclasses.
pystorm.component.Tuple objects contain metadata
about which component, stream and task it came from. The actual values
of the Tuple can be accessed by calling tup.values.

	Parameters:	tup (pystorm.component.Tuple) – the Tuple to be processed.

	
process_tick(tup)[source]

	Process special ‘tick Tuples’ which allow time-based
behaviour to be included in bolts.

Default behaviour is to ignore time ticks. This should be
overridden by subclasses who wish to react to timer events
via tick Tuples.

Tick Tuples will be sent to all bolts in a toplogy when the
storm configuration option ‘topology.tick.tuple.freq.secs’
is set to an integer value, the number of seconds.

	Parameters:	tup (pystorm.component.Tuple) – the Tuple to be processed.

	
raise_exception(exception, tup=None)

	Report an exception back to Storm via logging.

	Parameters:	
	exception – a Python exception.

	tup – a Tuple object.

	
read_handshake()

	Read and process an initial handshake message from Storm.

	
read_message()

	Read a message from Storm via serializer.

	
read_tuple()[source]

	Read a tuple from the pipe to Storm.

	
report_metric(name, value)

	Report a custom metric back to Storm.

	Parameters:	
	name – Name of the metric. This can be anything.

	value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

	
run()

	Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off
to subclasses. Any exceptions are caught and logged back to Storm
prior to the Python process exiting.

Warning

Subclasses should not override this method.

	
send_message(message)

	Send a message to Storm via stdout.

	
classmethod spec(name=None, inputs=None, par=None, config=None)[source]

	Create a ShellBoltSpec for a Python Bolt.

This spec represents this Bolt in a Topology.

	Parameters:	
	name (str) – Name of this Bolt. Defaults to name of
Topology attribute this is assigned
to.

	inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

	A dict mapping from
ComponentSpec to
Grouping.

	A list of Stream or
ComponentSpec.

	par (int) – Parallelism hint for this Bolt. For Python
Components, this works out to be the number of Python
processes running it in the the topology (across all
machines). See Parallelism and Workers.

Note

This can also be specified as an attribute of your
Bolt subclass.

	config (dict) – Component-specific config settings to pass to Storm.

Note

This can also be specified as an attribute of your
Bolt subclass.

Note

This method does not take a outputs argument because
outputs should be an attribute of your Bolt subclass.

	
class streamparse.BatchingBolt(*args, **kwargs)[source]

	Bases: pystorm.bolt.BatchingBolt, streamparse.storm.bolt.Bolt

pystorm BatchingBolt with streamparse-specific additions

	
ack(tup)

	Indicate that processing of a Tuple has succeeded.

	Parameters:	tup (str [http://docs.python.org/library/functions.html#str] or pystorm.component.Tuple) – the Tuple to acknowledge.

	
emit(tup, **kwargs)[source]

	Modified emit that will not return task IDs after emitting.

See pystorm.component.Bolt for more information.

	Returns:	None.

	
fail(tup)

	Indicate that processing of a Tuple has failed.

	Parameters:	tup (str [http://docs.python.org/library/functions.html#str] or pystorm.component.Tuple) – the Tuple to fail (its id if str).

	
group_key(tup)[source]

	Return the group key used to group Tuples within a batch.

By default, returns None, which put all Tuples in a single
batch, effectively just time-based batching. Override this to create
multiple batches based on a key.

	Parameters:	tup (pystorm.component.Tuple) – the Tuple used to extract a group key

	Returns:	Any hashable value.

	
initialize(storm_conf, context)

	Called immediately after the initial handshake with Storm and before
the main run loop. A good place to initialize connections to data
sources.

	Parameters:	
	storm_conf (dict [http://docs.python.org/library/stdtypes.html#dict]) – the Storm configuration for this component. This is
the configuration provided to the topology, merged in
with cluster configuration on the worker node.

	context (dict [http://docs.python.org/library/stdtypes.html#dict]) – information about the component’s place within the
topology such as: task IDs, inputs, outputs etc.

	
is_heartbeat(tup)

	

	Returns:	Whether or not the given Tuple is a heartbeat

	
is_tick(tup)

	

	Returns:	Whether or not the given Tuple is a tick Tuple

	
log(message, level=None)

	Log a message to Storm optionally providing a logging level.

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – the log message to send to Storm.

	level (str [http://docs.python.org/library/functions.html#str]) – the logging level that Storm should use when writing the
message. Can be one of: trace, debug, info, warn, or
error (default: info).

Warning

This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using
Component.logger and not setting pystorm.log.path, because
that will use a pystorm.component.StormHandler to do the
filtering on the Python side (instead of on the Java side after taking
the time to serialize your message and send it to Storm).

	
process(tup)[source]

	Group non-tick Tuples into batches by group_key.

Warning

This method should not be overriden. If you want to tweak
how Tuples are grouped into batches, override group_key.

	
process_batch(key, tups)[source]

	Process a batch of Tuples. Should be overridden by subclasses.

	Parameters:	
	key (hashable) – the group key for the list of batches.

	tups (list [http://docs.python.org/library/functions.html#list]) – a list of pystorm.component.Tuple s
for the group.

	
process_batches()[source]

	Iterate through all batches, call process_batch on them, and ack.

Separated out for the rare instances when we want to subclass
BatchingBolt and customize what mechanism causes batches to be
processed.

	
process_tick(tick_tup)[source]

	Increment tick counter, and call process_batch for all current
batches if tick counter exceeds ticks_between_batches.

See pystorm.component.Bolt for more information.

Warning

This method should not be overriden. If you want to tweak
how Tuples are grouped into batches, override group_key.

	
raise_exception(exception, tup=None)

	Report an exception back to Storm via logging.

	Parameters:	
	exception – a Python exception.

	tup – a Tuple object.

	
read_handshake()

	Read and process an initial handshake message from Storm.

	
read_message()

	Read a message from Storm via serializer.

	
read_tuple()

	Read a tuple from the pipe to Storm.

	
report_metric(name, value)

	Report a custom metric back to Storm.

	Parameters:	
	name – Name of the metric. This can be anything.

	value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

	
run()

	Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off
to subclasses. Any exceptions are caught and logged back to Storm
prior to the Python process exiting.

Warning

Subclasses should not override this method.

	
send_message(message)

	Send a message to Storm via stdout.

	
spec(name=None, inputs=None, par=None, config=None)

	Create a ShellBoltSpec for a Python Bolt.

This spec represents this Bolt in a Topology.

	Parameters:	
	name (str) – Name of this Bolt. Defaults to name of
Topology attribute this is assigned
to.

	inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

	A dict mapping from
ComponentSpec to
Grouping.

	A list of Stream or
ComponentSpec.

	par (int) – Parallelism hint for this Bolt. For Python
Components, this works out to be the number of Python
processes running it in the the topology (across all
machines). See Parallelism and Workers.

Note

This can also be specified as an attribute of your
Bolt subclass.

	config (dict) – Component-specific config settings to pass to Storm.

Note

This can also be specified as an attribute of your
Bolt subclass.

Note

This method does not take a outputs argument because
outputs should be an attribute of your Bolt subclass.

Logging

	
class streamparse.StormHandler(serializer)[source]

	Bases: logging.Handler

Handler that will send messages back to Storm.

Initialize handler

	Parameters:	serializer – The serializer of the component this handler is being
used for.

	
emit(record)[source]

	Emit a record.

If a formatter is specified, it is used to format the record.
If exception information is present, it is formatted using
traceback.print_exception and sent to Storm.

Topology DSL

	
class streamparse.Topology[source]

	Class to define a Storm topology in a Python DSL.

	
class streamparse.Grouping[source]

	A Grouping describes how Tuples should be distributed to the tasks of a
Bolt listening on a particular stream.

When no Grouping is specified, it defaults to SHUFFLE for normal streams,
and DIRECT for direct streams.

	Variables:	
	SHUFFLE – Tuples are randomly distributed across the Bolt’s tasks in a
way such that each Bolt is guaranteed to get an equal number
of Tuples.

	GLOBAL – The entire stream goes to a single one of the Bolt’s tasks.
Specifically, it goes to the task with the lowest id.

	DIRECT – This is a special kind of grouping. A stream grouped this way
means that the producer of the Tuple decides which task of the
consumer will receive this Tuple. Direct groupings can only be
declared on streams that have been declared as direct streams.
Tuples emitted to a direct stream must be emitted using the
the direct_task parameter to the
streamparse.Bolt.emit() and
streamparse.Spout.emit() methods.

	ALL – The stream is replicated across all the Bolt’s tasks. Use this
grouping with care.

	NONE – This grouping specifies that you don’t care how the stream is
grouped. Currently, none groupings are equivalent to shuffle
groupings. Eventually though, Storm will push down Bolts with
none groupings to execute in the same thread as the Bolt or
Spout they subscribe from (when possible).

	LOCAL_OR_SHUFFLE – If the target Bolt has one or more tasks in the
same worker process, Tuples will be shuffled to
just those in-process tasks. Otherwise, this acts
like a normal shuffle grouping.

	
classmethod custom_object(java_class_name, arg_list)[source]

	Tuples will be assigned to tasks by the given Java class.

	
classmethod custom_serialized(java_serialized)[source]

	Tuples will be assigned to tasks by the given Java serialized class.

	
classmethod fields(*fields)[source]

	The stream is partitioned by the fields specified in the grouping.

For example, if the stream is grouped by the user-id field, Tuples
with the same user-id will always go to the same task, but Tuples with
different user-id‘s may go to different tasks.

	
class streamparse.Stream(fields=None, name='default', direct=False)[source]

	A Storm output stream

	Parameters:	
	fields (list or tuple of str) – Field names for this stream.

	name (str) – Name of stream. Defaults to default.

	direct (bool) – Whether or not this stream is direct. Default is False.
See DIRECT.

	
class streamparse.JavaBolt(input_stream=<open file '<stdin>', mode 'r'>, output_stream=<open file '<stdout>', mode 'w'>, rdb_signal=10, serializer=u'json')[source]

	
	
classmethod spec(name=None, serialized_java=None, full_class_name=None, args_list=None, inputs=None, par=1, config=None, outputs=None)[source]

	Create a JavaBoltSpec for a Java Bolt.

This spec represents this Bolt in a Topology.

You must add the appropriate entries to your classpath by editing your
project’s project.clj file in order for this to work.

	Parameters:	
	name (str) – Name of this Bolt. Defaults to name of
Topology attribute this is assigned
to.

	serialized_java (bytes) – Serialized Java code representing the class.
You must either specify this, or
both full_class_name and args_list.

	full_class_name (str) – Fully qualified class name (including the
package name)

	args_list (list of basic data types) – A list of arguments to be passed to the constructor of
this class.

	inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

	A dict mapping from
ComponentSpec to
Grouping.

	A list of Stream or
ComponentSpec.

	par (int) – Parallelism hint for this Bolt. For Python
Components, this works out to be the number of Python
processes running it in the the topology (across all
machines). See Parallelism and Workers.

	config (dict) – Component-specific config settings to pass to Storm.

	outputs – Outputs this JavaBolt will produce. Acceptable forms
are:

	A list of Stream objects
describing the fields output on each stream.

	A list of str representing the fields output on
the default stream.

	
class streamparse.JavaSpout(input_stream=<open file '<stdin>', mode 'r'>, output_stream=<open file '<stdout>', mode 'w'>, rdb_signal=10, serializer=u'json')[source]

	
	
classmethod spec(name=None, serialized_java=None, full_class_name=None, args_list=None, par=1, config=None, outputs=None)[source]

	Create a JavaSpoutSpec for a Java Spout.

This spec represents this Spout in a Topology.

You must add the appropriate entries to your classpath by editing your
project’s project.clj file in order for this to work.

	Parameters:	
	name (str) – Name of this Spout. Defaults to name of
Topology attribute this is assigned
to.

	serialized_java (bytes) – Serialized Java code representing the class.
You must either specify this, or
both full_class_name and args_list.

	full_class_name (str) – Fully qualified class name (including the
package name)

	args_list (list of basic data types) – A list of arguments to be passed to the constructor of
this class.

	par (int) – Parallelism hint for this Spout. See Parallelism and Workers.

	config (dict) – Component-specific config settings to pass to Storm.

	outputs – Outputs this JavaSpout will produce. Acceptable forms
are:

	A list of Stream objects
describing the fields output on each stream.

	A list of str representing the fields output on
the default stream.

	
class streamparse.ShellBolt(input_stream=<open file '<stdin>', mode 'r'>, output_stream=<open file '<stdout>', mode 'w'>, rdb_signal=10, serializer=u'json')[source]

	A Bolt that is started by running a command with a script argument.

	
classmethod spec(name=None, command=None, script=None, inputs=None, par=None, config=None, outputs=None)[source]

	Create a ShellBoltSpec for a non-Java, non-Python Bolt.

If you want to create a spec for a Python Bolt, use
spec().

This spec represents this Bolt in a Topology.

	Parameters:	
	name (str) – Name of this Bolt. Defaults to name of
Topology attribute this is assigned
to.

	command (str) – Path to command the Storm will execute.

	script (str) – Arguments to command. Multiple arguments should just
be separated by spaces.

	inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

	A dict mapping from
ComponentSpec to
Grouping.

	A list of Stream or
ComponentSpec.

	par (int) – Parallelism hint for this Bolt. For shell
Components, this works out to be the number of running it
in the the topology (across all machines).
See Parallelism and Workers.

	config (dict) – Component-specific config settings to pass to Storm.

	outputs – Outputs this ShellBolt will produce. Acceptable forms
are:

	A list of Stream objects
describing the fields output on each stream.

	A list of str representing the fields output on
the default stream.

	
class streamparse.ShellSpout(input_stream=<open file '<stdin>', mode 'r'>, output_stream=<open file '<stdout>', mode 'w'>, rdb_signal=10, serializer=u'json')[source]

	
	
classmethod spec(name=None, command=None, script=None, par=None, config=None, outputs=None)[source]

	Create a ShellSpoutSpec for a non-Java, non-Python Spout.

If you want to create a spec for a Python Spout, use
spec().

This spec represents this Spout in a Topology.

	Parameters:	
	name (str) – Name of this Spout. Defaults to name of
Topology attribute this is assigned
to.

	command (str) – Path to command the Storm will execute.

	script (str) – Arguments to command. Multiple arguments should just
be separated by spaces.

	par (int) – Parallelism hint for this Spout. For shell
Components, this works out to be the number of processes
running it in the the topology (across all machines).
See Parallelism and Workers.

	config (dict) – Component-specific config settings to pass to Storm.

	outputs – Outputs this ShellSpout will produce. Acceptable forms
are:

	A list of Stream objects
describing the fields output on each stream.

	A list of str representing the fields output on
the default stream.

 Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

 Developing Streamparse

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	streamparse 3.2.0 documentation

Developing Streamparse

Lein

Install Leiningen according to the instructions in the quickstart.

Local pip installation

In your virtualenv for this project, go into ~/repos/streamparse (where you
cloned streamparse) and simply run:

python setup.py develop

This will install a streamparse Python version into the virtualenv which is
essentially symlinked to your local version.

NOTE: streamparse currently pip installs streamparse’s released version
on remote clusters automatically. Therefore, though this will work for local
development, you’ll need to push streamparse somewhere pip installable (or
change requirements.txt) to make it pick up that version on a remote cluster.

Installing Storm pre-releases

You can clone Storm from Github here:

git clone git@github.com:apache/storm.git

There are tags available for releases, e.g.:

git checkout v1.0.1

To build a local Storm release, use:

mvn install
cd storm-dist/binary
mvn package

These steps will take awhile as they also run Storm’s internal unit and
integration tests.

The first line will actually install Storm locally in your maven (.m2)
repository. You can confirm this with:

ls ~/.m2/repository/org/apache/storm/storm-core/1.0.1

You should now be able to change your project.clj to include a reference to
this new release.

Once you change that, you can run:

lein deps :tree | grep storm

To confirm it is using the upgraded Clojure 1.5.1 (changed in 0.9.2), run:

lein repl

 Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

 Frequently Asked Questions (FAQ)

 Navigation

 	
 index

 	
 previous |

 	streamparse 3.2.0 documentation

Frequently Asked Questions (FAQ)

General Questions

	Why use streamparse?

	Is streamparse compatible with Python 3?

	How can I contribute to streamparse?

	How do I trigger some code before or after I submit my topology?

	How should I install streamparse on the cluster nodes?

	Should I install Clojure?

	How do I deploy into a VPC?

	How do I override SSH settings?

Why use streamparse?

To lay your Python code out in topologies which can be automatically
parallelized in a Storm cluster of machines. This lets you scale your
computation horizontally and avoid issues related to Python’s GIL. See
Parallelism and Workers.

Is streamparse compatible with Python 3?

Yes, streamparse is fully compatible with Python 3 starting with version 3.3
which we use in our unit tests [https://github.com/Parsely/streamparse/blob/master/.travis.yml].

How can I contribute to streamparse?

Thanks for your interest in contributing to streamparse. We think
you’ll find the core maintainers great to work with and will help you along the
way when contributing pull requests.

If you already know what you’d like to add to streamparse then by all means,
feel free to submit a pull request and we’ll review it.

If you’re unsure about how to contribute, check out our open issues [https://github.com/Parsely/streamparse/issues?state=open] and find
one that looks interesting to you (we particularly need help on all issues
marked with the “help wanted” label).

If you’re not sure how to start or have some questions, shoot us an email in
the streamparse user group [https://groups.google.com/forum/#!forum/streamparse] and we’ll give you a hand.

From there, get to work on your fix and submit a pull request when ready which
we’ll review.

How do I trigger some code before or after I submit my topology?

After you create a streamparse project using sparse quickstart, you’ll have
both a tasks.py in that directory as well as fabric.py. In either of
these files, you can specify two functions: pre_submit and post_submit
which are expected to accept three arguments:

	topology_name: the name of the topology being submitted

	env_name: the name of the environment where the topology is being
submitted (e.g. "prod")

	env_config: the relevant config portion from the config.json file for
the environment you are submitting the topology to

Here is a sample tasks.py file that sends a message to IRC after a topology
is successfully submitted to prod.

my_project/tasks.py
from __future__ import absolute_import, print_function, unicode_literals

from invoke import task, run
from streamparse.ext.invoke import *

def post_submit(topo_name, env_name, env_config):
 if env_name == "prod":
 write_to_irc("Deployed {} to {}".format(topo_name, env_name))

How should I install streamparse on the cluster nodes?

streamparse assumes your Storm servers have Python, pip, and virtualenv
installed. After that, the installation of all required dependencies (including
streamparse itself) is taken care of via the config.json file for the
streamparse project and the sparse submit command.

Should I install Clojure?

No, the Java requirements for streamparse are identical to that of Storm itself.
Storm requires Java and bundles Clojure as a requirement [https://github.com/apache/storm/blob/5383ac375cb2955e3247d485e46f1f58bff62810/pom.xml#L320-L322], so you do not need
to do any separate installation of Clojure. You just need Java on all Storm
servers.

How do I deploy into a VPC?

Update your ~/.ssh/config to use a bastion host inside your VPC for your
commands:

Host *.internal.example.com
 ProxyCommand ssh bastion.example.com exec nc %h %p

If you don’t have a common subdomain you’ll have to list all of the hosts
individually:

Host host1.example.com
 ProxyCommand ssh bastion.example.com exec nc %h %p
...

Set up your streamparse config to use all of the hosts normally (without bastion
host).

How do I override SSH settings?

It is highly recommended that you just modify your ~/.ssh/config file if you
need to tweak settings for setting up the SSH tunnel to your Nimbus server, but
you can also set your SSH password or port in your config.json by setting
the ssh_password or ssh_port environment settings.

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "prod": {
 "user": "somebody",
 "ssh_password": "THIS IS A REALLY BAD IDEA",
 "ssh_port": 52,
 "nimbus": "streamparse-box",
 "workers": [
 "streamparse-box"
],
 "virtualenv_root": "/data/virtualenvs"
 }
 }
}

 Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	streamparse 3.2.0 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | J
 | L
 | N
 | P
 | R
 | S
 | T

A

 	

 	ack() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

B

 	

 	BatchingBolt (class in streamparse)

 	

 	Bolt (class in streamparse)

C

 	

 	custom_object() (streamparse.Grouping class method)

 	

 	custom_serialized() (streamparse.Grouping class method)

E

 	

 	emit() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	(streamparse.StormHandler method)

F

 	

 	fail() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	

 	fields() (streamparse.Grouping class method)

G

 	

 	group_key() (streamparse.BatchingBolt method)

 	

 	Grouping (class in streamparse)

I

 	

 	initialize() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	is_heartbeat() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	

 	is_tick() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

J

 	

 	JavaBolt (class in streamparse)

 	

 	JavaSpout (class in streamparse)

L

 	

 	log() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

N

 	

 	next_tuple() (streamparse.Spout method)

P

 	

 	process() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	process_batch() (streamparse.BatchingBolt method)

 	

 	process_batches() (streamparse.BatchingBolt method)

 	process_tick() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

R

 	

 	raise_exception() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	read_handshake() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	read_message() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	

 	read_tuple() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	report_metric() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	run() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

S

 	

 	send_message() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt method)

 	(streamparse.Spout method)

 	ShellBolt (class in streamparse)

 	ShellSpout (class in streamparse)

 	spec() (streamparse.BatchingBolt method)

 	

 	(streamparse.Bolt class method)

 	(streamparse.JavaBolt class method)

 	(streamparse.JavaSpout class method)

 	(streamparse.ShellBolt class method)

 	(streamparse.ShellSpout class method)

 	(streamparse.Spout class method)

 	

 	Spout (class in streamparse)

 	StormHandler (class in streamparse)

 	Stream (class in streamparse)

T

 	

 	Topology (class in streamparse)

 	

 	Tuple (class in streamparse)

 Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_modules/streamparse/dsl/topology.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for streamparse.dsl.topology

"""
Topology base class
"""
from __future__ import absolute_import

from copy import deepcopy

import simplejson as json
from pystorm.component import Component
from six import add_metaclass, iteritems, itervalues, string_types
from thriftpy.transport import TMemoryBuffer
from thriftpy.protocol import TBinaryProtocol

from ..thrift import storm_thrift
from .bolt import JavaBoltSpec, ShellBoltSpec
from .component import ComponentSpec, ShellComponentSpec
from .spout import JavaSpoutSpec, ShellSpoutSpec
from .util import to_python_arg_list

class TopologyType(type):
 """Class to define a Storm topology in a Python DSL."""

 def __new__(mcs, classname, bases, class_dict):
 bolt_specs = {}
 spout_specs = {}
 # Copy ComponentSpec items out of class_dict
 specs = TopologyType.class_dict_to_specs(class_dict)
 # Perform checks
 for spec in itervalues(specs):
 if isinstance(spec, (JavaBoltSpec, ShellBoltSpec)):
 TopologyType.add_bolt_spec(spec, bolt_specs)
 elif isinstance(spec, (JavaSpoutSpec, ShellSpoutSpec)):
 TopologyType.add_spout_spec(spec, spout_specs)
 else:
 raise TypeError('Specifications should either be bolts or '
 'spouts. Given: {!r}'.format(spec))
 TopologyType.clean_spec_inputs(spec, specs)
 if classname != 'Topology' and not spout_specs:
 raise ValueError('A Topology requires at least one Spout')
 if 'config' in class_dict:
 config_dict = class_dict['config']
 if not isinstance(config_dict, dict):
 raise TypeError('Topology config must be a dictionary. Given: '
 '{!r}'.format(config_dict))
 else:
 class_dict['config'] = {}
 class_dict['thrift_bolts'] = bolt_specs
 class_dict['thrift_spouts'] = spout_specs
 class_dict['specs'] = list(specs.values())
 class_dict['thrift_topology'] = storm_thrift.StormTopology(spouts=spout_specs,
 bolts=bolt_specs,
 state_spouts={})
 return type.__new__(mcs, classname, bases, class_dict)

 @classmethod
 def class_dict_to_specs(mcs, class_dict):
 """Extract valid `ComponentSpec` entries from `Topology.__dict__`."""
 specs = {}
 # Set spec names first
 for name, spec in iteritems(class_dict):
 if isinstance(spec, ComponentSpec):
 # Use the variable name as the specification name.
 if spec.name is None:
 spec.name = name
 if spec.name in specs:
 raise ValueError("Duplicate component name: {}"
 .format(spec.name))
 else:
 specs[spec.name] = spec
 elif isinstance(spec, Component):
 raise TypeError('Topology classes should have ComponentSpec '
 'attributes. Did you forget to call the spec '
 'class method for your component? Given: {!r}'
 .format(spec))
 return specs

 @classmethod
 def add_bolt_spec(mcs, spec, bolt_specs):
 """Add valid Bolt specs to `bolt_specs`; raise exceptions for others."""
 if not spec.inputs:
 cls_name = spec.component_cls.__name__
 raise ValueError('{} "{}" requires at least one input, because it '
 'is a Bolt.'.format(cls_name, spec.name))
 bolt_specs[spec.name] = storm_thrift.Bolt(bolt_object=spec.component_object,
 common=spec.common)

 @classmethod
 def add_spout_spec(mcs, spec, spout_specs):
 """Add valid Spout specs to `spout_specs`; raise exceptions for others.
 """
 if not spec.outputs:
 cls_name = spec.component_cls.__name__
 raise ValueError('{} "{}" requires at least one output, because it '
 'is a Spout'.format(cls_name, spec.name))
 spout_specs[spec.name] = storm_thrift.SpoutSpec(spout_object=spec.component_object,
 common=spec.common)

 @classmethod
 def clean_spec_inputs(mcs, spec, specs):
 """Convert `spec.inputs` to a dict mapping from stream IDs to groupings.
 """
 if spec.inputs is None:
 spec.inputs = {}
 for stream_id, grouping in list(iteritems(spec.inputs)):
 if isinstance(stream_id.componentId, ComponentSpec):
 # Have to reinsert key after fix because hash changes
 del spec.inputs[stream_id]
 stream_id.componentId = stream_id.componentId.name
 spec.inputs[stream_id] = grouping
 # This should never happen, but it's worth checking for
 elif stream_id.componentId is None:
 raise TypeError('GlobalStreamId.componentId cannot be None.')
 # Check for invalid fields grouping
 stream_comp = specs[stream_id.componentId]
 valid_fields = set(stream_comp.outputs[stream_id.streamId]
 .output_fields)
 if grouping.fields is not None:
 for field in grouping.fields:
 if field not in valid_fields:
 raise ValueError('Field {!r} specified in grouping is '
 'not a valid output field for the {!r}'
 ' {!r} stream.'.format(field,
 stream_comp.name,
 stream_id.streamId))

 def __repr__(cls):
 """:returns: A string representation of the topology"""
 return repr(getattr(cls, '_topology', None))

@add_metaclass(TopologyType)
[docs]class Topology(object):
 """Class to define a Storm topology in a Python DSL."""
 @classmethod
 def write(cls, stream):
 """Write the topology to a stream or file.

 Typically used to write to Nimbus.

 .. note::
 This will not save the `specs` attribute, as that is not part of
 the Thrift output.
 """
 def write_it(stream):
 transport_out = TMemoryBuffer()
 protocol_out = TBinaryProtocol(transport_out)
 cls._topology.write(protocol_out)
 transport_bytes = transport_out.getvalue()
 stream.write(transport_bytes)

 if isinstance(stream, string_types):
 with open(stream, 'wb') as output_file:
 write_it(output_file)
 else:
 write_it(stream)

 @classmethod
 def read(cls, stream):
 """Read a topology from a stream or file.

 .. note::
 This will not properly reconstruct the `specs` attribute, as that is
 not included in the Thrift output.
 """
 def read_it(stream):
 stream_bytes = stream.read()
 transport_in = TMemoryBuffer(stream_bytes)
 protocol_in = TBinaryProtocol(transport_in)
 topology = storm_thrift.StormTopology()
 topology.read(protocol_in)
 cls._topology = topology
 cls.thrift_bolts = topology.bolts
 cls.thrift_spouts = topology.spouts
 # Can't reconstruct Python specs from Thrift.
 cls.specs = []

 if isinstance(stream, string_types):
 with open(stream, 'rb') as input_file:
 return read_it(input_file)
 else:
 return read_it(stream)

 @staticmethod
 def _spec_to_flux_dict(spec):
 """Convert a ComponentSpec into a dict as expected by Flux"""
 flux_dict = {'id': spec.name,
 'constructorArgs': []}
 if isinstance(spec, ShellComponentSpec):
 if isinstance(spec, ShellBoltSpec):
 flux_dict['className'] = 'org.apache.storm.flux.wrappers.bolts.FluxShellBolt'
 else:
 flux_dict['className'] = 'org.apache.storm.flux.wrappers.spouts.FluxShellSpout'
 shell_object = spec.component_object.shell
 flux_dict['constructorArgs'].append([shell_object.execution_command,
 shell_object.script])
 if not spec.outputs:
 flux_dict['constructorArgs'].append(['NONE_BUT_FLUX_WANTS_SOMETHING_HERE'])
 for output_stream in spec.outputs.keys():
 if output_stream == 'default':
 output_fields = spec.outputs['default'].output_fields
 flux_dict['constructorArgs'].append(output_fields)
 else:
 if 'configMethods' not in flux_dict:
 flux_dict['configMethods'] = []
 flux_dict['configMethods'].append({
 'name': 'setNamedStream',
 'args': [
 output_stream,
 spec.outputs[output_stream].output_fields
]
 })
 else:
 if spec.component_object.serialized_java is not None:
 raise TypeError('Flux does not support specifying serialized '
 'Java objects. Given: {!r}'.format(spec))
 java_object = spec.component_object.java_object
 flux_dict['className'] = java_object.full_class_name
 # Convert JavaObjectArg instances into basic data types
 flux_dict['constructorArgs'] = to_python_arg_list(java_object.args_list)
 return flux_dict

 @staticmethod
 def _stream_to_flux_dict(spec, global_stream, grouping):
 """Convert a GlobalStreamId into a dict as expected by Flux"""
 flux_dict = {'from': global_stream.componentId,
 'to': spec.name}
 grouping_dict = {'streamId': global_stream.streamId}
 for key, val in grouping.__dict__.items():
 if val is not None:
 grouping_dict['type'] = key.upper()
 if key == 'fields':
 if val:
 grouping_dict['args'] = val
 else:
 grouping_dict['type'] = 'GLOBAL'
 elif key == 'custom_object':
 grouping_dict['type'] = 'CUSTOM'
 class_dict = {'className': val.full_class_name,
 'args': to_python_arg_list(val.arg_list)}
 grouping_dict['customClass'] = class_dict
 flux_dict['grouping'] = grouping_dict
 return flux_dict

 @classmethod
 def to_flux_dict(cls, name):
 """Convert topology to dict that can written out as Flux YAML file."""
 flux_dict = {'name': name,
 'bolts': [],
 'spouts': [],
 'streams': []}
 for spec in cls.specs:
 if isinstance(spec, (JavaBoltSpec, ShellBoltSpec)):
 flux_dict['bolts'].append(cls._spec_to_flux_dict(spec))
 for global_stream, grouping in spec.inputs.items():
 stream_dict = cls._stream_to_flux_dict(spec,
 global_stream,
 grouping)
 flux_dict['streams'].append(stream_dict)
 elif isinstance(spec, (JavaSpoutSpec, ShellSpoutSpec)):
 flux_dict['spouts'].append(cls._spec_to_flux_dict(spec))
 else:
 raise TypeError('Specifications should either be bolts or '
 'spouts. Given: {!r}'.format(spec))
 flux_dict = {key: val for key, val in flux_dict.items() if val}
 return flux_dict

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_modules/streamparse/dsl/stream.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for streamparse.dsl.stream

"""
Streams and Groupings
"""
from __future__ import absolute_import

from six import iteritems, string_types

from ..thrift import storm_thrift
from .util import to_java_arg
from storm_thrift import NullStruct

[docs]class Stream(storm_thrift.StreamInfo):
 """
 A Storm output stream
 """
 def __init__(self, fields=None, name='default', direct=False):
 """
 :param fields: Field names for this stream.
 :type fields: `list` or `tuple` of `str`
 :param name: Name of stream. Defaults to ``default``.
 :type name: `str`
 :param direct: Whether or not this stream is direct. Default is `False`.
 See :attr:`~streamparse.dsl.stream.Grouping.DIRECT`.
 :type direct: `bool`
 """
 if fields is None:
 fields = []
 elif isinstance(fields, (list, tuple)):
 fields = list(fields)
 for field in fields:
 if not isinstance(field, string_types):
 raise TypeError('All field names must be strings; given: '
 '{!r}'.format(field))
 else:
 raise TypeError('Stream fields must be a list, tuple, or None; '
 'given: {!r}'.format(fields))
 self.fields = fields
 if isinstance(name, string_types):
 self.name = name
 else:
 raise TypeError('Stream name must be a string; given: {!r}'
 .format(name))
 if isinstance(direct, bool):
 self.direct = direct
 else:
 raise TypeError('"direct" must be either True or False; given: {!r}'
 .format(direct))

class _Grouping(storm_thrift.Grouping):
 """
 Version of `storm_thrift.Grouping` that has better __str__.
 """
 def __repr__(self):
 for name, val in iteritems(vars(self)):
 if not name.startswith('_') and val is not None:
 if isinstance(val, NullStruct):
 return '{}'.format(name.upper())
 else:
 return '{}({!r})'.format(name, val)

[docs]class Grouping(object):
 """
 A Grouping describes how Tuples should be distributed to the tasks of a
 Bolt listening on a particular stream.

 When no Grouping is specified, it defaults to `SHUFFLE` for normal streams,
 and `DIRECT` for direct streams.

 :ivar SHUFFLE: Tuples are randomly distributed across the Bolt's tasks in a
 way such that each Bolt is guaranteed to get an equal number
 of Tuples.
 :ivar GLOBAL: The entire stream goes to a single one of the Bolt's tasks.
 Specifically, it goes to the task with the lowest id.
 :ivar DIRECT: This is a special kind of grouping. A stream grouped this way
 means that the producer of the Tuple decides which task of the
 consumer will receive this Tuple. Direct groupings can only be
 declared on streams that have been declared as direct streams.
 Tuples emitted to a direct stream must be emitted using the
 the `direct_task` parameter to the
 :meth:`streamparse.Bolt.emit` and
 :meth:`streamparse.Spout.emit` methods.
 :ivar ALL: The stream is replicated across all the Bolt's tasks. Use this
 grouping with care.
 :ivar NONE: This grouping specifies that you don't care how the stream is
 grouped. Currently, none groupings are equivalent to shuffle
 groupings. Eventually though, Storm will push down Bolts with
 none groupings to execute in the same thread as the Bolt or
 Spout they subscribe from (when possible).
 :ivar LOCAL_OR_SHUFFLE: If the target Bolt has one or more tasks in the
 same worker process, Tuples will be shuffled to
 just those in-process tasks. Otherwise, this acts
 like a normal shuffle grouping.
 """
 __slots__ = ()

 SHUFFLE = _Grouping(shuffle=NullStruct())
 GLOBAL = _Grouping(fields=[])
 DIRECT = _Grouping(direct=NullStruct())
 ALL = _Grouping(all=NullStruct())
 NONE = _Grouping(none=NullStruct())
 LOCAL_OR_SHUFFLE = _Grouping(local_or_shuffle=NullStruct())

 @classmethod
[docs] def fields(cls, *fields):
 """The stream is partitioned by the fields specified in the grouping.

 For example, if the stream is grouped by the `user-id` field, Tuples
 with the same `user-id` will always go to the same task, but Tuples with
 different `user-id`'s may go to different tasks."""
 if len(fields) == 1 and isinstance(fields[0], list):
 fields = fields[0]
 else:
 fields = list(fields)
 if not fields:
 raise ValueError('List cannot be empty for fields grouping')
 return _Grouping(fields=fields)

 @classmethod
[docs] def custom_object(cls, java_class_name, arg_list):
 """Tuples will be assigned to tasks by the given Java class."""
 java_object = storm_thrift.JavaObject(full_class_name=java_class_name,
 arg_list=[to_java_arg(arg)
 for arg in arg_list])
 return _Grouping(custom_object=java_object)

 @classmethod
[docs] def custom_serialized(cls, java_serialized):
 """Tuples will be assigned to tasks by the given Java serialized class.
 """
 if not isinstance(java_serialized, bytes):
 return TypeError('Argument to custom_serialized must be a '
 'serialized Java class as bytes. Given: {!r}'
 .format(java_serialized))
 return _Grouping(custom_serialized=java_serialized)

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_images/quickstart.gif
Terminal @S EYG e, 29 Ty @) wedMay 7 705 AM L

CHANGES . md examples README . nd streamparse. egg-info
DEVELOP. md LICENSE requirements. txt tasks.py
dev-requirements. txt MANIFEST.in setup.cfg test

» [master]

byzanz-record -d 20
usage: byzanz-record [OPTIONS] filename
byzanz-record --help

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

5 [master]
byzanz-record -d 35 screencast. gif

AC

5 [master]
byzanz-record -d 35 screencast. gif

AC

5 [master]

byzanz-record -d 35 screencast. gif

torn- EETTSRE

_images/streamparse-logo.png
-
(3 streamparse
@

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 All modules for which code is available

		pystorm.bolt

		pystorm.component

		pystorm.spout

		streamparse.dsl.stream

		streamparse.dsl.topology

		streamparse.storm.bolt

		streamparse.storm.spout

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_static/comment.png

_modules/pystorm/bolt.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for pystorm.bolt

"""Base bolt classes."""
from __future__ import absolute_import, print_function, unicode_literals

import logging
import os
import re
import signal
import sys
import threading
import time
from collections import defaultdict, namedtuple

from six import iteritems, itervalues, reraise

from .component import Component, Tuple

Convert names to valid Python identifiers by replacing non-word characters
whitespace and leading digits with underscores.
_IDENTIFIER_RE = re.compile(r'\W|^(?=\d)')

log = logging.getLogger(__name__)

class Bolt(Component):
 """The base class for all pystorm bolts.

 For more information on bolts, consult Storm's
 `Concepts documentation <http://storm.apache.org/documentation/Concepts.html>`_.

 :ivar auto_anchor: A ``bool`` indicating whether or not the bolt should
 automatically anchor emits to the incoming Tuple ID.
 Tuple anchoring is how Storm provides reliability, you
 can read more about
 `Tuple anchoring in Storm's docs <https://storm.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api>`_.
 Default is ``True``.

 :ivar auto_ack: A ``bool`` indicating whether or not the bolt should
 automatically acknowledge Tuples after ``process()``
 is called. Default is ``True``.
 :ivar auto_fail: A ``bool`` indicating whether or not the bolt should
 automatically fail Tuples when an exception occurs when the
 ``process()`` method is called. Default is ``True``.

 Example:

 .. code-block:: python

 from pystorm.bolt import Bolt

 class SentenceSplitterBolt(Bolt):

 def process(self, tup):
 sentence = tup.values[0]
 for word in sentence.split(" "):
 self.emit([word])
 """

 auto_anchor = True
 auto_ack = True
 auto_fail = True

 # Using list; Bolt class and subclasses can have more than one current_tup.
 _current_tups = []

 def __init__(self, *args, **kwargs):
 super(Bolt, self).__init__(*args, **kwargs)
 self._source_tuple_types = defaultdict(dict)

 def _setup_component(self, storm_conf, context):
 # See Component._setup_component for docs
 super(Bolt, self)._setup_component(storm_conf, context)
 # source->stream->fields requires Storm 0.10.0 or later
 source_stream_fields = context.get('source->stream->fields', {})
 for source, stream_fields in iteritems(source_stream_fields):
 for stream, fields in iteritems(stream_fields):
 type_name = (_IDENTIFIER_RE.sub('_', source.title()) +
 _IDENTIFIER_RE.sub('_', stream.title()) +
 'Tuple')
 self._source_tuple_types[source][stream] = namedtuple(type_name,
 fields)

 @staticmethod
[docs] def is_tick(tup):
 """ :returns: Whether or not the given Tuple is a tick Tuple """
 return tup.component == '__system' and tup.stream == '__tick'

[docs] def read_tuple(self):
 """Read a tuple from the pipe to Storm."""
 cmd = self.read_command()
 source = cmd['comp']
 stream = cmd['stream']
 values = cmd['tuple']
 val_type = self._source_tuple_types[source].get(stream)
 return Tuple(cmd['id'], source, stream, cmd['task'],
 tuple(values) if val_type is None else val_type(*values))

[docs] def process(self, tup):
 """Process a single Tuple :class:`pystorm.component.Tuple` of
 input

 This should be overridden by subclasses.
 :class:`pystorm.component.Tuple` objects contain metadata
 about which component, stream and task it came from. The actual values
 of the Tuple can be accessed by calling ``tup.values``.

 :param tup: the Tuple to be processed.
 :type tup: :class:`pystorm.component.Tuple`
 """
 raise NotImplementedError()

[docs] def process_tick(self, tup):
 """Process special 'tick Tuples' which allow time-based
 behaviour to be included in bolts.

 Default behaviour is to ignore time ticks. This should be
 overridden by subclasses who wish to react to timer events
 via tick Tuples.

 Tick Tuples will be sent to all bolts in a toplogy when the
 storm configuration option 'topology.tick.tuple.freq.secs'
 is set to an integer value, the number of seconds.

 :param tup: the Tuple to be processed.
 :type tup: :class:`pystorm.component.Tuple`
 """
 pass

[docs] def emit(self, tup, stream=None, anchors=None, direct_task=None,
 need_task_ids=False):
 """Emit a new Tuple to a stream.

 :param tup: the Tuple payload to send to Storm, should contain only
 JSON-serializable data.
 :type tup: :class:`list` or :class:`pystorm.component.Tuple`
 :param stream: the ID of the stream to emit this Tuple to. Specify
 ``None`` to emit to default stream.
 :type stream: str
 :param anchors: IDs the Tuples (or :class:`pystorm.component.Tuple`
 instances) which the emitted Tuples should be anchored
 to. If ``auto_anchor`` is set to ``True`` and
 you have not specified ``anchors``, ``anchors`` will be
 set to the incoming/most recent Tuple ID(s).
 :type anchors: list
 :param direct_task: the task to send the Tuple to.
 :type direct_task: int
 :param need_task_ids: indicate whether or not you'd like the task IDs
 the Tuple was emitted (default: ``False``).
 :type need_task_ids: bool

 :returns: ``None``, unless ``need_task_ids=True``, in which case it will
 be a ``list`` of task IDs that the Tuple was sent to if. Note
 that when specifying direct_task, this will be equal to
 ``[direct_task]``.
 """
 if anchors is None:
 anchors = self._current_tups if self.auto_anchor else []
 anchors = [a.id if isinstance(a, Tuple) else a for a in anchors]

 return super(Bolt, self).emit(tup, stream=stream, anchors=anchors,
 direct_task=direct_task,
 need_task_ids=need_task_ids)

[docs] def ack(self, tup):
 """Indicate that processing of a Tuple has succeeded.

 :param tup: the Tuple to acknowledge.
 :type tup: :class:`str` or :class:`pystorm.component.Tuple`
 """
 tup_id = tup.id if isinstance(tup, Tuple) else tup
 self.send_message({'command': 'ack', 'id': tup_id})

[docs] def fail(self, tup):
 """Indicate that processing of a Tuple has failed.

 :param tup: the Tuple to fail (its ``id`` if ``str``).
 :type tup: :class:`str` or :class:`pystorm.component.Tuple`
 """
 tup_id = tup.id if isinstance(tup, Tuple) else tup
 self.send_message({'command': 'fail', 'id': tup_id})

 def _run(self):
 """The inside of ``run``'s infinite loop.

 Separated out so it can be properly unit tested.
 """
 tup = self.read_tuple()
 self._current_tups = [tup]
 if self.is_heartbeat(tup):
 self.send_message({'command': 'sync'})
 elif self.is_tick(tup):
 self.process_tick(tup)
 if self.auto_ack:
 self.ack(tup)
 else:
 self.process(tup)
 if self.auto_ack:
 self.ack(tup)
 # Reset _current_tups so that we don't accidentally fail the wrong
 # Tuples if a successive call to read_tuple fails.
 # This is not done in `finally` clause because we want the current
 # Tuples to fail when there is an exception.
 self._current_tups = []

 def _handle_run_exception(self, exc):
 """Process an exception encountered while running the ``run()`` loop.

 Called right before program exits.
 """
 if len(self._current_tups) == 1:
 tup = self._current_tups[0]
 self.raise_exception(exc, tup)
 if self.auto_fail:
 self.fail(tup)

class BatchingBolt(Bolt):
 """A bolt which batches Tuples for processing.

 Batching Tuples is unexpectedly complex to do correctly. The main problem
 is that all bolts are single-threaded. The difficult comes when the
 topology is shutting down because Storm stops feeding the bolt Tuples. If
 the bolt is blocked waiting on stdin, then it can't process any waiting
 Tuples, or even ack ones that were asynchronously written to a data store.

 This bolt helps with that by grouping Tuples received between tick Tuples
 into batches.

 To use this class, you must implement ``process_batch``. ``group_key`` can
 be optionally implemented so that Tuples are grouped before
 ``process_batch`` is even called.

 :ivar auto_anchor: A ``bool`` indicating whether or not the bolt should
 automatically anchor emits to the incoming Tuple ID.
 Tuple anchoring is how Storm provides reliability, you
 can read more about `Tuple anchoring in Storm's
 docs <https://storm.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api>`_.
 Default is ``True``.
 :ivar auto_ack: A ``bool`` indicating whether or not the bolt should
 automatically acknowledge Tuples after ``process_batch()``
 is called. Default is ``True``.
 :ivar auto_fail: A ``bool`` indicating whether or not the bolt should
 automatically fail Tuples when an exception occurs when the
 ``process_batch()`` method is called. Default is ``True``.
 :ivar ticks_between_batches: The number of tick Tuples to wait before
 processing a batch.

 Example:

 .. code-block:: python

 from pystorm.bolt import BatchingBolt

 class WordCounterBolt(BatchingBolt):

 ticks_between_batches = 5

 def group_key(self, tup):
 word = tup.values[0]
 return word # collect batches of words

 def process_batch(self, key, tups):
 # emit the count of words we had per 5s batch
 self.emit([key, len(tups)])
 """

 auto_anchor = True
 auto_ack = True
 auto_fail = True
 ticks_between_batches = 1

 def __init__(self, *args, **kwargs):
 super(BatchingBolt, self).__init__(*args, **kwargs)
 self._batches = defaultdict(list)
 self._tick_counter = 0

[docs] def group_key(self, tup):
 """Return the group key used to group Tuples within a batch.

 By default, returns None, which put all Tuples in a single
 batch, effectively just time-based batching. Override this to create
 multiple batches based on a key.

 :param tup: the Tuple used to extract a group key
 :type tup: :class:`pystorm.component.Tuple`
 :returns: Any ``hashable`` value.
 """
 return None

[docs] def process_batch(self, key, tups):
 """Process a batch of Tuples. Should be overridden by subclasses.

 :param key: the group key for the list of batches.
 :type key: hashable
 :param tups: a `list` of :class:`pystorm.component.Tuple` s
 for the group.
 :type tups: list
 """
 raise NotImplementedError()

[docs] def emit(self, tup, **kwargs):
 """Modified emit that will not return task IDs after emitting.

 See :class:`pystorm.component.Bolt` for more information.

 :returns: ``None``.
 """
 kwargs['need_task_ids'] = False
 return super(BatchingBolt, self).emit(tup, **kwargs)

[docs] def process_tick(self, tick_tup):
 """Increment tick counter, and call ``process_batch`` for all current
 batches if tick counter exceeds ``ticks_between_batches``.

 See :class:`pystorm.component.Bolt` for more information.

 .. warning::
 This method should **not** be overriden. If you want to tweak
 how Tuples are grouped into batches, override ``group_key``.
 """
 self._tick_counter += 1
 # ACK tick Tuple immediately, since it's just responsible for counter
 self.ack(tick_tup)
 if self._tick_counter > self.ticks_between_batches and self._batches:
 self.process_batches()
 self._tick_counter = 0

[docs] def process_batches(self):
 """Iterate through all batches, call process_batch on them, and ack.

 Separated out for the rare instances when we want to subclass
 BatchingBolt and customize what mechanism causes batches to be
 processed.
 """
 for key, batch in iteritems(self._batches):
 self._current_tups = batch
 self.process_batch(key, batch)
 if self.auto_ack:
 for tup in batch:
 self.ack(tup)
 # Set current batch to [] so that we know it was acked if a
 # later batch raises an exception
 self._batches[key] = []
 self._batches = defaultdict(list)

[docs] def process(self, tup):
 """Group non-tick Tuples into batches by ``group_key``.

 .. warning::
 This method should **not** be overriden. If you want to tweak
 how Tuples are grouped into batches, override ``group_key``.
 """
 # Append latest Tuple to batches
 group_key = self.group_key(tup)
 self._batches[group_key].append(tup)

 def _run(self):
 """The inside of ``run``'s infinite loop.

 Separated out so it can be properly unit tested.
 """
 self._current_tups = [self.read_tuple()]
 tup = self._current_tups[0]
 if self.is_heartbeat(tup):
 self.send_message({'command': 'sync'})
 elif self.is_tick(tup):
 self.process_tick(tup)
 else:
 self.process(tup)
 # reset so that we don't accidentally fail the wrong Tuples
 # if a successive call to read_tuple fails
 self._current_tups = []

 def _handle_run_exception(self, exc):
 """Process an exception encountered while running the ``run()`` loop.

 Called right before program exits.
 """
 self.raise_exception(exc, self._current_tups)

 if self.auto_fail:
 # Fail batches
 for batch in itervalues(self._batches):
 for tup in batch:
 self.fail(tup)
 # Fail current tick Tuple if we have one
 for tup in self._current_tups:
 if self.is_tick(tup):
 self.fail(tup)

class TicklessBatchingBolt(BatchingBolt):
 """A BatchingBolt which uses a timer thread instead of tick tuples.

 Batching tuples is unexpectedly complex to do correctly. The main problem
 is that all bolts are single-threaded. The difficult comes when the
 topology is shutting down because Storm stops feeding the bolt tuples. If
 the bolt is blocked waiting on stdin, then it can't process any waiting
 tuples, or even ack ones that were asynchronously written to a data store.

 This bolt helps with that grouping tuples based on a time interval and then
 processing them on a worker thread.

 To use this class, you must implement ``process_batch``. ``group_key`` can
 be optionally implemented so that tuples are grouped before
 ``process_batch`` is even called.

 :ivar auto_anchor: A ``bool`` indicating whether or not the bolt should
 automatically anchor emits to the incoming tuple ID.
 Tuple anchoring is how Storm provides reliability, you
 can read more about `tuple anchoring in Storm's
 docs <https://storm.incubator.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api>`_.
 Default is ``True``.
 :ivar auto_ack: A ``bool`` indicating whether or not the bolt should
 automatically acknowledge tuples after ``process_batch()``
 is called. Default is ``True``.
 :ivar auto_fail: A ``bool`` indicating whether or not the bolt should
 automatically fail tuples when an exception occurs when the
 ``process_batch()`` method is called. Default is ``True``.
 :ivar secs_between_batches: The time (in seconds) between calls to
 ``process_batch()``. Note that if there are no
 tuples in any batch, the TicklessBatchingBolt will
 continue to sleep.

 .. note::
 Can be fractional to specify greater
 precision (e.g. 2.5).

 Example:

 .. code-block:: python

 from pystorm.bolt import TicklessBatchingBolt

 class WordCounterBolt(TicklessBatchingBolt):

 secs_between_batches = 5

 def group_key(self, tup):
 word = tup.values[0]
 return word # collect batches of words

 def process_batch(self, key, tups):
 # emit the count of words we had per 5s batch
 self.emit([key, len(tups)])
 """

 auto_anchor = True
 auto_ack = True
 auto_fail = True
 secs_between_batches = 2

 def __init__(self, *args, **kwargs):
 super(TicklessBatchingBolt, self).__init__(*args, **kwargs)
 self.exc_info = None
 signal.signal(signal.SIGUSR1, self._handle_worker_exception)

 iname = self.__class__.__name__
 threading.current_thread().name = '{}:main-thread'.format(iname)
 self._batches = defaultdict(list)
 self._batch_lock = threading.Lock()
 self._batcher = threading.Thread(target=self._batch_entry)
 self._batcher.name = '{}:_batcher-thread'.format(iname)
 self._batcher.daemon = True
 self._batcher.start()

 def process_tick(self, tick_tup):
 """ Just ack tick tuples and ignore them. """
 self.ack(tick_tup)

 def _batch_entry_run(self):
 """The inside of ``_batch_entry``'s infinite loop.

 Separated out so it can be properly unit tested.
 """
 time.sleep(self.secs_between_batches)
 with self._batch_lock:
 self.process_batches()

 def _batch_entry(self):
 """Entry point for the batcher thread."""
 try:
 while True:
 self._batch_entry_run()
 except:
 self.exc_info = sys.exc_info()
 os.kill(self.pid, signal.SIGUSR1) # interrupt stdin waiting

 def _handle_worker_exception(self, signum, frame):
 """Handle an exception raised in the worker thread.

 Exceptions in the _batcher thread will send a SIGUSR1 to the main
 thread which we catch here, and then raise in the main thread.
 """
 reraise(*self.exc_info)

 def _run(self):
 """The inside of ``run``'s infinite loop.

 Separate from BatchingBolt's implementation because
 we need to be able to acquire the batch lock after
 reading the tuple.

 We can't acquire the lock before reading the tuple because if
 that hange (i.e. the topology is shutting down) the lock being
 acquired will freeze the rest of the bolt, which is precisely
 what this batcher seeks to avoid.
 """
 tup = self.read_tuple()
 with self._batch_lock:
 self._current_tups = [tup]
 if self.is_heartbeat(tup):
 self.send_message({'command': 'sync'})
 elif self.is_tick(tup):
 self.process_tick(tup)
 else:
 self.process(tup)
 # reset so that we don't accidentally fail the wrong Tuples
 # if a successive call to read_tuple fails
 self._current_tups = []

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_modules/streamparse/storm/spout.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for streamparse.storm.spout

"""
Module to add streamparse-specific extensions to pystorm Spout class
"""

import pystorm

from ..dsl.spout import JavaSpoutSpec, ShellSpoutSpec
from .component import Component

[docs]class JavaSpout(Component):
 @classmethod
[docs] def spec(cls, name=None, serialized_java=None, full_class_name=None,
 args_list=None, par=1, config=None, outputs=None):
 """Create a :class:`JavaSpoutSpec` for a Java Spout.

 This spec represents this Spout in a :class:`~streamparse.Topology`.

 You must add the appropriate entries to your classpath by editing your
 project's ``project.clj`` file in order for this to work.

 :param name: Name of this Spout. Defaults to name of
 :class:`~streamparse.Topology` attribute this is assigned
 to.
 :type name: `str`
 :param serialized_java: Serialized Java code representing the class.
 You must either specify this, or
 both ``full_class_name`` and ``args_list``.
 :type serialized_java: `bytes`
 :param full_class_name: Fully qualified class name (including the
 package name)
 :type full_class_name: `str`
 :param args_list: A list of arguments to be passed to the constructor of
 this class.
 :type args_list: `list` of basic data types
 :param par: Parallelism hint for this Spout. See :ref:`parallelism`.
 :type par: `int`
 :param config: Component-specific config settings to pass to Storm.
 :type config: `dict`
 :param outputs: Outputs this JavaSpout will produce. Acceptable forms
 are:

 1. A `list` of :class:`~streamparse.Stream` objects
 describing the fields output on each stream.
 2. A `list` of `str` representing the fields output on
 the ``default`` stream.
 """
 return JavaSpoutSpec(cls, name=name, serialized_java=serialized_java,
 full_class_name=full_class_name,
 args_list=args_list, par=par,
 config=config, outputs=outputs)

[docs]class ShellSpout(Component):
 @classmethod
[docs] def spec(cls, name=None, command=None, script=None, par=None, config=None,
 outputs=None):
 """Create a :class:`ShellSpoutSpec` for a non-Java, non-Python Spout.

 If you want to create a spec for a Python Spout, use
 :meth:`~streamparse.dsl.bolt.Spout.spec`.

 This spec represents this Spout in a :class:`~streamparse.Topology`.

 :param name: Name of this Spout. Defaults to name of
 :class:`~streamparse.Topology` attribute this is assigned
 to.
 :type name: `str`
 :param command: Path to command the Storm will execute.
 :type command: `str`
 :param script: Arguments to `command`. Multiple arguments should just
 be separated by spaces.
 :type script: `str`
 :param par: Parallelism hint for this Spout. For shell
 Components, this works out to be the number of processes
 running it in the the topology (across all machines).
 See :ref:`parallelism`.
 :type par: `int`
 :param config: Component-specific config settings to pass to Storm.
 :type config: `dict`
 :param outputs: Outputs this ShellSpout will produce. Acceptable forms
 are:

 1. A `list` of :class:`~streamparse.Stream` objects
 describing the fields output on each stream.
 2. A `list` of `str` representing the fields output on
 the ``default`` stream.
 """
 return ShellSpoutSpec(cls, command=command, script=script, name=name,
 par=par, config=config, outputs=outputs)

[docs]class Spout(pystorm.spout.Spout, ShellSpout):
 """pystorm Spout with streamparse-specific additions"""
 @classmethod
[docs] def spec(cls, name=None, par=None, config=None):
 """Create a :class:`~ShellBoltSpec` for a Python Spout.

 This spec represents this Spout in a :class:`~streamparse.Topology`.

 :param name: Name of this Spout. Defaults to name of
 :class:`~streamparse.Topology` attribute this is assigned
 to.
 :type name: `str`
 :param par: Parallelism hint for this Spout. For Python
 Components, this works out to be the number of Python
 processes running it in the the topology (across all
 machines). See :ref:`parallelism`.

 .. note::
 This can also be specified as an attribute of your
 :class:`~Spout` subclass.

 :type par: `int`
 :param config: Component-specific config settings to pass to Storm.

 .. note::
 This can also be specified as an attribute of your
 :class:`~Spout` subclass.

 :type config: `dict`

 .. note::
 This method does not take a ``outputs`` argument because
 ``outputs`` should be an attribute of your :class:`~Spout` subclass.
 """
 return ShellSpoutSpec(cls, command='streamparse_run',
 script='{}.{}'.format(cls.__module__,
 cls.__name__),
 name=name, par=par, config=config,
 outputs=cls.outputs)

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_modules/pystorm/component.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for pystorm.component

"""Base primititve classes for working with Storm."""
from __future__ import absolute_import, print_function, unicode_literals

import logging
import os
import signal
import sys
from collections import deque, namedtuple
from logging.handlers import RotatingFileHandler
from os.path import join
from threading import RLock
from traceback import format_exc

from .exceptions import StormWentAwayError
from .serializers.msgpack_serializer import MsgpackSerializer
from .serializers.json_serializer import JSONSerializer

Support for Storm Log levels as per STORM-414
_STORM_LOG_TRACE = 0
_STORM_LOG_DEBUG = 1
_STORM_LOG_INFO = 2
_STORM_LOG_WARN = 3
_STORM_LOG_ERROR = 4
_STORM_LOG_LEVELS = {'trace': _STORM_LOG_TRACE,
 'debug': _STORM_LOG_DEBUG,
 'info': _STORM_LOG_INFO,
 'warn': _STORM_LOG_WARN,
 'warning': _STORM_LOG_WARN,
 'error': _STORM_LOG_ERROR,
 'critical': _STORM_LOG_ERROR}
_PYTHON_LOG_LEVELS = {'critical': logging.CRITICAL,
 'error': logging.ERROR,
 'warning': logging.WARNING,
 'warn': logging.WARNING,
 'info': logging.INFO,
 'debug': logging.DEBUG,
 'trace': logging.DEBUG}
_SERIALIZERS = {"json": JSONSerializer, "msgpack": MsgpackSerializer}

log = logging.getLogger(__name__)

def remote_pdb_handler(signum, frame):
 """ Handler to drop us into a remote debugger upon receiving SIGUSR1 """
 try:
 from remote_pdb import RemotePdb
 rdb = RemotePdb(host='127.0.0.1', port=0)
 rdb.set_trace(frame=frame)
 except ImportError:
 log.warning('remote_pdb unavailable. Please install remote_pdb to '
 'allow remote debugging.')
 # Restore signal handler for later
 signal.signal(signum, remote_pdb_handler)

[docs]class StormHandler(logging.Handler):
 """Handler that will send messages back to Storm."""

 def __init__(self, serializer):
 """ Initialize handler

 :param serializer: The serializer of the component this handler is being
 used for.
 """
 super(StormHandler, self).__init__()
 self.serializer = serializer

[docs] def emit(self, record):
 """
 Emit a record.

 If a formatter is specified, it is used to format the record.
 If exception information is present, it is formatted using
 traceback.print_exception and sent to Storm.
 """
 try:
 msg = self.format(record)
 level = _STORM_LOG_LEVELS.get(record.levelname.lower(),
 _STORM_LOG_INFO)
 self.serializer.send_message({'command': 'log', 'msg': str(msg),
 'level': level})
 except Exception:
 self.handleError(record)

class LogStream(object):
 """Object that implements enough of the Python stream API to be used as
 sys.stdout. Messages are written to the Python logger.
 """
 def __init__(self, logger):
 self.logger = logger

 def write(self, message):
 if message.strip() == "":
 return # skip blank lines

 try:
 self.logger.info(message)
 except:
 # There's been an issue somewhere in the logging sub-system
 # so we'll put stderr and stdout back to their originals and
 # raise the exception which will cause Storm to choke
 sys.stdout = sys.__stdout__
 raise

 def flush(self):
 """No-op method to prevent crashes when someone does
 sys.stdout.flush.
 """
 pass

Tuple = namedtuple('Tuple', 'id component stream task values')
"""Storm's primitive data type passed around via streams.

:ivar id: the ID of the Tuple.
:type id: str
:ivar component: component that the Tuple was generated from.
:type component: str
:ivar stream: the stream that the Tuple was emitted into.
:type stream: str
:ivar task: the task the Tuple was generated from.
:type task: int
:ivar values: the payload of the Tuple where data is stored.
:type values: tuple (or namedtuple for Storm 0.10.0+)
"""

class Component(object):
 """Base class for spouts and bolts which contains class methods for
 logging messages back to the Storm worker process.

 :ivar input_stream: The ``file``-like object to use to retrieve commands
 from Storm. Defaults to ``sys.stdin``.
 :ivar output_stream: The ``file``-like object to send messages to Storm with.
 Defaults to ``sys.stdout``.
 :ivar topology_name: The name of the topology sent by Storm in the initial
 handshake.
 :ivar task_id: The numerical task ID for this component, as sent by Storm in
 the initial handshake.
 :ivar component_name: The name of this component, as sent by Storm in the
 initial handshake.
 :ivar debug: A ``bool`` indicating whether or not Storm is running in debug
 mode. Specified by the `topology.debug` Storm setting.
 :ivar storm_conf: A ``dict`` containing the configuration values sent by
 Storm in the initial handshake with this component.
 :ivar context: The context of where this component is in the topology. See
 `the Storm Multi-Lang protocol documentation <https://storm.apache.org/documentation/Multilang-protocol.html>`__
 for details.
 :ivar pid: An ``int`` indicating the process ID of this component as
 retrieved by ``os.getpid()``.
 :ivar logger: A logger to use with this component.

 .. note::
 Using ``Component.logger`` combined with the
 :class:`pystorm.component.StormHandler` handler is
 the recommended way for logging messages from your
 component. If you use ``Component.log`` instead, the logging
 messages will *always* be sent to Storm, even if they are
 ``debug`` level messages and you are running in production.
 Using :class:`pystorm.component.StormHandler`
 ensures that you will instead have your logging messages
 filtered on the Python side and only have the messages you
 actually want logged serialized and sent to Storm.
 :ivar serializer: The ``Serializer`` that is used to serialize messages
 between Storm and Python.
 :ivar exit_on_exception: A ``bool`` indicating whether or not the process
 should exit when an exception other than
 ``StormWentAwayError`` is raised. Defaults to
 ``True``.
 """
 exit_on_exception = True

 def __init__(self, input_stream=sys.stdin, output_stream=sys.stdout,
 rdb_signal=signal.SIGUSR1, serializer="json"):
 # Ensure we don't fall back on the platform-dependent encoding and
 # always use UTF-8
 self.topology_name = None
 self.task_id = None
 self.component_name = None
 self.debug = None
 self.storm_conf = None
 self.context = None
 self.pid = os.getpid()
 self.logger = None
 # pending commands/Tuples we read while trying to read task IDs
 self._pending_commands = deque()
 # pending task IDs we read while trying to read commands/Tuples
 self._pending_task_ids = deque()
 self._reader_lock = RLock()
 self._writer_lock = RLock()
 if serializer in _SERIALIZERS:
 self.serializer = _SERIALIZERS[serializer](input_stream,
 output_stream,
 self._reader_lock,
 self._writer_lock)
 else:
 raise ValueError("Unknown serializer: {0}", serializer)

 # Setup remote pdb handler if asked to
 if rdb_signal is not None:
 signal.signal(rdb_signal, remote_pdb_handler)

 @staticmethod
 def is_heartbeat(tup):
 """ :returns: Whether or not the given Tuple is a heartbeat """
 return tup.task == -1 and tup.stream == '__heartbeat'

 def _setup_component(self, storm_conf, context):
 """Add helpful instance variables to component after initial handshake
 with Storm. Also configure logging.
 """
 self.topology_name = storm_conf.get('topology.name', '')
 self.task_id = context.get('taskid', '')
 self.component_name = context.get('componentid')
 # If using Storm before 0.10.0 componentid is not available
 if self.component_name is None:
 self.component_name = context.get('task->component', {})\
 .get(str(self.task_id), '')
 self.debug = storm_conf.get("topology.debug", False)
 self.storm_conf = storm_conf
 self.context = context

 # Set up logging
 self.logger = logging.getLogger('.'.join((__name__,
 self.component_name)))
 log_path = self.storm_conf.get('pystorm.log.path')
 log_file_name = self.storm_conf.get('pystorm.log.file',
 'pystorm_{topology_name}'
 '_{component_name}'
 '_{task_id}'
 '_{pid}.log')
 root_log = logging.getLogger()
 log_level = self.storm_conf.get('pystorm.log.level', 'info')
 if log_path:
 max_bytes = self.storm_conf.get('pystorm.log.max_bytes',
 1000000) # 1 MB
 backup_count = self.storm_conf.get('pystorm.log.backup_count',
 10)
 log_file = join(log_path,
 (log_file_name
 .format(topology_name=self.topology_name,
 component_name=self.component_name,
 task_id=self.task_id,
 pid=self.pid)))
 handler = RotatingFileHandler(log_file, maxBytes=max_bytes,
 backupCount=backup_count)
 log_format = self.storm_conf.get('pystorm.log.format',
 '%(asctime)s - %(name)s - '
 '%(levelname)s - %(message)s')
 else:
 self.log('pystorm StormHandler logging enabled, so all messages at '
 'levels greater than "pystorm.log.level" ({}) will be sent'
 ' to Storm.'.format(log_level))
 handler = StormHandler(self.serializer)
 log_format = self.storm_conf.get('pystorm.log.format',
 '%(asctime)s - %(name)s - '
 '%(message)s')
 formatter = logging.Formatter(log_format)
 log_level = _PYTHON_LOG_LEVELS.get(log_level, logging.INFO)
 if self.debug:
 # potentially override logging that was provided if
 # topology.debug was set to true
 log_level = logging.DEBUG
 handler.setLevel(log_level)
 handler.setFormatter(formatter)
 root_log.addHandler(handler)
 self.logger.setLevel(log_level)
 logging.getLogger('pystorm').setLevel(log_level)
 # Redirect stdout to ensure that print statements/functions
 # won't disrupt the multilang protocol
 if self.serializer.output_stream == sys.stdout:
 sys.stdout = LogStream(logging.getLogger('pystorm.stdout'))

 def read_message(self):
 """Read a message from Storm via serializer."""
 return self.serializer.read_message()

 def read_task_ids(self):
 if self._pending_task_ids:
 return self._pending_task_ids.popleft()
 else:
 msg = self.read_message()
 while not isinstance(msg, list):
 self._pending_commands.append(msg)
 msg = self.read_message()
 return msg

 def read_command(self):
 if self._pending_commands:
 return self._pending_commands.popleft()
 else:
 msg = self.read_message()
 while isinstance(msg, list):
 self._pending_task_ids.append(msg)
 msg = self.read_message()
 return msg

 def read_handshake(self):
 """Read and process an initial handshake message from Storm."""
 msg = self.read_message()
 pid_dir, _conf, _context = msg['pidDir'], msg['conf'], msg['context']

 # Write a blank PID file out to the pidDir
 open(join(pid_dir, str(self.pid)), 'w').close()
 self.send_message({'pid': self.pid})

 return _conf, _context

 def send_message(self, message):
 """Send a message to Storm via stdout."""
 if not isinstance(message, dict):
 logger = self.logger if self.logger else log
 logger.error("%s.%d attempted to send a non dict message to Storm: "
 "%r", self.component_name, self.pid, message)
 return
 self.serializer.send_message(message)

 def raise_exception(self, exception, tup=None):
 """Report an exception back to Storm via logging.

 :param exception: a Python exception.
 :param tup: a :class:`Tuple` object.
 """
 if tup:
 message = ('Python {exception_name} raised while processing Tuple '
 '{tup!r}\n{traceback}')
 else:
 message = 'Python {exception_name} raised\n{traceback}'
 message = message.format(exception_name=exception.__class__.__name__,
 tup=tup,
 traceback=format_exc())
 self.send_message({'command': 'error', 'msg': str(message)})
 self.send_message({'command': 'sync'}) # sync up right away

 def report_metric(self, name, value):
 """Report a custom metric back to Storm.

 :param name: Name of the metric. This can be anything.
 :param value: Value of the metric. This is usually a number.

 Only supported in Storm 0.9.3+.

 .. note:
 In order for this to work, the metric must be registered on the
 Storm side. See example code
 `here <https://github.com/dashengju/storm/blob/573c42a64885dac9a6a0d4c69a754500b607a8f1/storm-core/src/jvm/backtype/storm/testing/PythonShellMetricsBolt.java#L22-L23>`__.
 """
 self.send_message({'command': 'metrics', 'name': name, 'params': value})

 def log(self, message, level=None):
 """Log a message to Storm optionally providing a logging level.

 :param message: the log message to send to Storm.
 :type message: str
 :param level: the logging level that Storm should use when writing the
 ``message``. Can be one of: trace, debug, info, warn, or
 error (default: ``info``).
 :type level: str

 .. warning::

 This will send your message to Storm regardless of what level you
 specify. In almost all cases, you are better of using
 ``Component.logger`` and not setting ``pystorm.log.path``, because
 that will use a :class:`pystorm.component.StormHandler` to do the
 filtering on the Python side (instead of on the Java side after taking
 the time to serialize your message and send it to Storm).
 """
 level = _STORM_LOG_LEVELS.get(level, _STORM_LOG_INFO)
 self.send_message({'command': 'log', 'msg': str(message),
 'level': level})

 def emit(self, tup, tup_id=None, stream=None, anchors=None,
 direct_task=None, need_task_ids=False):
 """Emit a new Tuple to a stream.

 :param tup: the Tuple payload to send to Storm, should contain only
 JSON-serializable data.
 :type tup: :class:`list` or :class:`pystorm.component.Tuple`
 :param tup_id: the ID for the Tuple. If omitted by a
 :class:`pystorm.spout.Spout`, this emit will be
 unreliable.
 :type tup_id: str
 :param stream: the ID of the stream to emit this Tuple to. Specify
 ``None`` to emit to default stream.
 :type stream: str
 :param anchors: IDs the Tuples (or
 :class:`pystorm.component.Tuple` instances)
 which the emitted Tuples should be anchored to. This is
 only passed by :class:`pystorm.bolt.Bolt`.
 :type anchors: list
 :param direct_task: the task to send the Tuple to.
 :type direct_task: int
 :param need_task_ids: indicate whether or not you'd like the task IDs
 the Tuple was emitted (default: ``False``).
 :type need_task_ids: bool

 :returns: ``None``, unless ``need_task_ids=True``, in which case it will
 be a ``list`` of task IDs that the Tuple was sent to if. Note
 that when specifying direct_task, this will be equal to
 ``[direct_task]``.
 """
 if not isinstance(tup, (list, tuple)):
 raise TypeError('All Tuples must be either lists or tuples, '
 'received {!r} instead.'.format(type(tup)))

 msg = {'command': 'emit', 'tuple': tup}
 downstream_task_ids = None

 if anchors is not None:
 msg['anchors'] = anchors
 if tup_id is not None:
 msg['id'] = tup_id
 if stream is not None:
 msg['stream'] = stream
 if direct_task is not None:
 msg['task'] = direct_task
 if need_task_ids:
 downstream_task_ids = [direct_task]

 if not need_task_ids:
 # only need to send on False, Storm's default is True
 msg['need_task_ids'] = need_task_ids

 if need_task_ids and direct_task is None:
 # Use both locks so we ensure send_message and read_task_ids are for
 # same emit
 with self._reader_lock, self._writer_lock:
 self.send_message(msg)
 downstream_task_ids = self.read_task_ids()
 # No locks necessary in simple case because serializer will acquire
 # write lock itself
 else:
 self.send_message(msg)

 return downstream_task_ids

 def _run(self):
 """The inside of ``run``'s infinite loop.

 Separated out so it can be properly unit tested.

 Must be implemented by sub-class.
 """
 raise NotImplementedError

 def initialize(self, storm_conf, context):
 """Called immediately after the initial handshake with Storm and before
 the main run loop. A good place to initialize connections to data
 sources.

 :param storm_conf: the Storm configuration for this component. This is
 the configuration provided to the topology, merged in
 with cluster configuration on the worker node.
 :type storm_conf: dict
 :param context: information about the component's place within the
 topology such as: task IDs, inputs, outputs etc.
 :type context: dict
 """
 pass

 def run(self):
 """Main run loop for all components.

 Performs initial handshake with Storm and reads Tuples handing them off
 to subclasses. Any exceptions are caught and logged back to Storm
 prior to the Python process exiting.

 .. warning::

 Subclasses should **not** override this method.
 """
 storm_conf, context = self.read_handshake()
 self._setup_component(storm_conf, context)
 self.initialize(storm_conf, context)
 while True:
 try:
 self._run()
 except StormWentAwayError:
 log.info('Exiting because parent Storm process went away.')
 sys.exit(2)
 except Exception as e:
 log_msg = "Exception in {}.run()".format(self.__class__.__name__)
 exc_info = sys.exc_info()
 try:
 self.logger.error(log_msg, exc_info=True)
 self._handle_run_exception(e)
 except StormWentAwayError:
 log.error(log_msg, exc_info=exc_info)
 log.info('Exiting because parent Storm process went away.')
 sys.exit(2)
 except:
 log.error(log_msg, exc_info=exc_info)
 log.error('While trying to handle previous exception...',
 exc_info=sys.exc_info())
 if self.exit_on_exception:
 sys.exit(1)

 def _handle_run_exception(self, exc):
 """Process an exception encountered while running the ``run()`` loop.

 The base implementation just uses ``Component.raise_exception(exc)`` to
 report the exception bag to Storm.

 Called right before program exits.
 """
 self.raise_exception(exc)

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_modules/pystorm/spout.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for pystorm.spout

"""
Base Spout classes.
"""

from __future__ import absolute_import, print_function, unicode_literals

import itertools
import logging

from six.moves import zip

from .component import Component

log = logging.getLogger(__name__)

class Spout(Component):
 """Base class for all pystorm spouts.

 For more information on spouts, consult Storm's
 `Concepts documentation <http://storm.apache.org/documentation/Concepts.html>`_.
 """

[docs] def ack(self, tup_id):
 """Called when a bolt acknowledges a Tuple in the topology.

 :param tup_id: the ID of the Tuple that has been fully acknowledged in
 the topology.
 :type tup_id: str
 """
 pass

[docs] def fail(self, tup_id):
 """Called when a Tuple fails in the topology

 A spout can choose to emit the Tuple again or ignore the fail. The
 default is to ignore.

 :param tup_id: the ID of the Tuple that has failed in the topology
 either due to a bolt calling ``fail()`` or a Tuple
 timing out.
 :type tup_id: str
 """
 pass

[docs] def next_tuple(self):
 """Implement this function to emit Tuples as necessary.

 This function should not block, or Storm will think the
 spout is dead. Instead, let it return and pystorm will
 send a noop to storm, which lets it know the spout is functioning.
 """
 raise NotImplementedError()

[docs] def emit(self, tup, tup_id=None, stream=None, direct_task=None,
 need_task_ids=False):
 """Emit a spout Tuple message.

 :param tup: the Tuple to send to Storm, should contain only
 JSON-serializable data.
 :type tup: list or tuple
 :param tup_id: the ID for the Tuple. Leave this blank for an
 unreliable emit.
 :type tup_id: str
 :param stream: ID of the stream this Tuple should be emitted to.
 Leave empty to emit to the default stream.
 :type stream: str
 :param direct_task: the task to send the Tuple to if performing a
 direct emit.
 :type direct_task: int
 :param need_task_ids: indicate whether or not you'd like the task IDs
 the Tuple was emitted (default: ``False``).
 :type need_task_ids: bool

 :returns: ``None``, unless ``need_task_ids=True``, in which case it will
 be a ``list`` of task IDs that the Tuple was sent to if. Note
 that when specifying direct_task, this will be equal to
 ``[direct_task]``.
 """
 return super(Spout, self).emit(tup, tup_id=tup_id, stream=stream,
 direct_task=direct_task,
 need_task_ids=need_task_ids)

 def _run(self):
 """The inside of ``run``'s infinite loop.

 Separated out so it can be properly unit tested.
 """
 cmd = self.read_command()
 if cmd['command'] == 'next':
 self.next_tuple()
 elif cmd['command'] == 'ack':
 self.ack(cmd['id'])
 elif cmd['command'] == 'fail':
 self.fail(cmd['id'])
 else:
 self.logger.error('Received invalid command from Storm: %r', cmd)
 self.send_message({'command': 'sync'})

 © Copyright 2014-2015, Parsely.
 Created using Sphinx 1.3.5.

_modules/streamparse/storm/bolt.html

 Navigation

 		
 index

 		streamparse 3.2.0 documentation »

 		Module code »

 Source code for streamparse.storm.bolt

"""
Module to add streamparse-specific extensions to pystorm Bolt classes
"""

import pystorm

from ..dsl.bolt import JavaBoltSpec, ShellBoltSpec
from .component import Component

[docs]class JavaBolt(Component):
 @classmethod
[docs] def spec(cls, name=None, serialized_java=None, full_class_name=None,
 args_list=None, inputs=None, par=1, config=None, outputs=None):
 """Create a :class:`JavaBoltSpec` for a Java Bolt.

 This spec represents this Bolt in a :class:`~streamparse.Topology`.

 You must add the appropriate entries to your classpath by editing your
 project's ``project.clj`` file in order for this to work.

 :param name: Name of this Bolt. Defaults to name of
 :class:`~streamparse.Topology` attribute this is assigned
 to.
 :type name: `str`
 :param serialized_java: Serialized Java code representing the class.
 You must either specify this, or
 both ``full_class_name`` and ``args_list``.
 :type serialized_java: `bytes`
 :param full_class_name: Fully qualified class name (including the
 package name)
 :type full_class_name: `str`
 :param args_list: A list of arguments to be passed to the constructor of
 this class.
 :type args_list: `list` of basic data types
 :param inputs: Streams that feed into this Bolt.

 Two forms of this are acceptable:

 1. A `dict` mapping from
 :class:`~streamparse.dsl.component.ComponentSpec` to
 :class:`~streamparse.Grouping`.
 2. A `list` of :class:`~streamparse.Stream` or
 :class:`~streamparse.dsl.component.ComponentSpec`.
 :param par: Parallelism hint for this Bolt. For Python
 Components, this works out to be the number of Python
 processes running it in the the topology (across all
 machines). See :ref:`parallelism`.
 :type par: `int`
 :param config: Component-specific config settings to pass to Storm.
