
streamparse Documentation
Release 3.13.1

Parsely

Jan 16, 2018

Contents

1 Quickstart 3

2 Topologies 13

3 API 19

4 Developing Streamparse 37

5 Frequently Asked Questions (FAQ) 39

6 Indices and tables 43

i

ii

streamparse Documentation, Release 3.13.1

streamparse lets you run Python code against real-time streams of data. Integrates with Apache Storm.

Contents 1

https://travis-ci.org/Parsely/streamparse

streamparse Documentation, Release 3.13.1

2 Contents

CHAPTER 1

Quickstart

1.1 Dependencies

1.1.1 Java and Clojure

To run local and remote computation clusters, streamparse relies upon a JVM technology called Apache Storm. The
integration with this technology is lightweight, and for the most part, you don’t need to think about it.

However, to get the library running, you’ll need

1. JDK 7+, which you can install with apt-get, homebrew, or an installler; and

2. lein, which you can install from the Leiningen project page or github

3. Apache Storm development environment, which you can install from the Storm project page

You will need to have at least Apache Storm version 0.10.0 to cooperate with Streamparse.

Confirm that you have lein installed by running:

> lein version

You should get output similar to this:

Leiningen 2.3.4 on Java 1.7.0_55 Java HotSpot(TM) 64-Bit Server VM

Confirm that you have storm installed by running:

> storm version

You should get output similar to this:

3

http://leiningen.org/
https://github.com/technomancy/leiningen#leiningen
http://storm.apache.org/releases/current/Setting-up-development-environment.html

streamparse Documentation, Release 3.13.1

Running: java -client -Ddaemon.name= -Dstorm.options= -Dstorm.home=/opt/apache-storm-
→˓1.0.1 -Dstorm.log.dir=/opt/apache-storm-1.0.1/logs -Djava.library.path=/usr/local/
→˓lib:/opt/local/lib:/usr/lib -Dstorm.conf.file= -cp /opt/apache-storm-1.0.1/lib/
→˓reflectasm-1.10.1.jar:/opt/apache-storm-1.0.1/lib/kryo-3.0.3.jar:/opt/apache-storm-
→˓1.0.1/lib/log4j-over-slf4j-1.6.6.jar:/opt/apache-storm-1.0.1/lib/clojure-1.7.0.jar:/
→˓opt/apache-storm-1.0.1/lib/log4j-slf4j-impl-2.1.jar:/opt/apache-storm-1.0.1/lib/
→˓servlet-api-2.5.jar:/opt/apache-storm-1.0.1/lib/disruptor-3.3.2.jar:/opt/apache-
→˓storm-1.0.1/lib/objenesis-2.1.jar:/opt/apache-storm-1.0.1/lib/storm-core-1.0.1.jar:/
→˓opt/apache-storm-1.0.1/lib/slf4j-api-1.7.7.jar:/opt/apache-storm-1.0.1/lib/storm-
→˓rename-hack-1.0.1.jar:/opt/apache-storm-1.0.1/lib/log4j-api-2.1.jar:/opt/apache-
→˓storm-1.0.1/lib/log4j-core-2.1.jar:/opt/apache-storm-1.0.1/lib/minlog-1.3.0.jar:/
→˓opt/apache-storm-1.0.1/lib/asm-5.0.3.jar:/opt/apache-storm-1.0.1/conf org.apache.
→˓storm.utils.VersionInfo
Storm 1.0.1
URL https://git-wip-us.apache.org/repos/asf/storm.git -r
→˓b5c16f919ad4099e6fb25f1095c9af8b64ac9f91
Branch (no branch)
Compiled by tgoetz on 2016-04-29T20:44Z
From source with checksum 1aea9df01b9181773125826339b9587e

If lein isn’t installed, follow these directions to install it.

If storm isn’t installed, follow these directions.

Once that’s all set, you install streamparse using pip:

> pip install streamparse

1.2 Your First Project

When working with streamparse, your first step is to create a project using the command-line tool, sparse:

> sparse quickstart wordcount

Creating your wordcount streamparse project...
create wordcount
create wordcount/.gitignore
create wordcount/config.json
create wordcount/fabfile.py
create wordcount/project.clj
create wordcount/README.md
create wordcount/src
create wordcount/src/bolts/
create wordcount/src/bolts/__init__.py
create wordcount/src/bolts/wordcount.py
create wordcount/src/spouts/
create wordcount/src/spouts/__init__.py
create wordcount/src/spouts/words.py
create wordcount/topologies
create wordcount/topologies/wordcount.py
create wordcount/virtualenvs
create wordcount/virtualenvs/wordcount.txt

Done.

Try running your topology locally with:

4 Chapter 1. Quickstart

http://leiningen.org/#install
http://storm.apache.org/releases/current/Setting-up-development-environment.html

streamparse Documentation, Release 3.13.1

> cd wordcount
sparse run

The quickstart project provides a basic wordcount topology example which you can examine and modify. You can
inspect the other commands that sparse provides by running:

> sparse -h

If you see an error like:

Local Storm version, 1.0.1, is not the same as the version in your project.clj, 0.10.
→˓0. The versions must match.

You will have to edit your wordcount/project.clj file and change Apache Storm library version to match the one you
have installed.

1.3 Project Structure

streamparse projects expect to have the following directory layout:

File/Folder Contents
config.json Configuration information for all of your topologies.
fabfile.py Optional custom fabric tasks.
project.clj leiningen project file (can be used to add external JVM dependencies).
src/ Python source files (bolts/spouts/etc.) for topologies.
tasks.py Optional custom invoke tasks.
topologies/ Contains topology definitions written using the Topology DSL.
virtualenvs/ Contains pip requirements files used to install dependencies on remote Storm servers.

1.4 Defining Topologies

Storm’s services are Thrift-based and although it is possible to define a topology in pure Python using Thrift. For
details see Topology DSL.

Let’s have a look at the definition file created by using the sparse quickstart command.

"""
Word count topology
"""

from streamparse import Grouping, Topology

from bolts.wordcount import WordCountBolt
from spouts.words import WordSpout

class WordCount(Topology):
word_spout = WordSpout.spec()
count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields('word')},

par=2)

1.3. Project Structure 5

streamparse Documentation, Release 3.13.1

In the count_bolt bolt, we’ve told Storm that we’d like the stream of input tuples to be grouped by the named field
word. Storm offers comprehensive options for stream groupings, but you will most commonly use a shuffle or fields
grouping:

• Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks in a way such that each bolt is guar-
anteed to get an equal number of tuples. This is the default grouping if no other is specified.

• Fields grouping: The stream is partitioned by the fields specified in the grouping. For example, if the stream is
grouped by the “user-id” field, tuples with the same “user-id” will always go to the same task, but tuples with
different “user-id”’s may go to different tasks.

There are more options to configure with spouts and bolts, we’d encourage you to refer to our Topology DSL docs or
Storm’s Concepts for more information.

1.5 Spouts and Bolts

The general flow for creating new spouts and bolts using streamparse is to add them to your src folder and update
the corresponding topology definition.

Let’s create a spout that emits sentences until the end of time:

import itertools

from streamparse.spout import Spout

class SentenceSpout(Spout):
outputs = ['sentence']

def initialize(self, stormconf, context):
self.sentences = [

"She advised him to take a long holiday, so he immediately quit work and
→˓took a trip around the world",

"I was very glad to get a present from her",
"He will be here in half an hour",
"She saw him eating a sandwich",

]
self.sentences = itertools.cycle(self.sentences)

def next_tuple(self):
sentence = next(self.sentences)
self.emit([sentence])

def ack(self, tup_id):
pass # if a tuple is processed properly, do nothing

def fail(self, tup_id):
pass # if a tuple fails to process, do nothing

The magic in the code above happens in the initialize() and next_tuple() functions. Once the spout enters
the main run loop, streamparse will call your spout’s initialize() method. After initialization is complete,
streamparse will continually call the spout’s next_tuple() method where you’re expected to emit tuples that
match whatever you’ve defined in your topology definition.

Now let’s create a bolt that takes in sentences, and spits out words:

6 Chapter 1. Quickstart

http://storm.apache.org/documentation/Concepts.html#stream-groupings
http://storm.apache.org/documentation/Concepts.html

streamparse Documentation, Release 3.13.1

import re

from streamparse.bolt import Bolt

class SentenceSplitterBolt(Bolt):
outputs = ['word']

def process(self, tup):
sentence = tup.values[0] # extract the sentence
sentence = re.sub(r"[,.;!\?]", "", sentence) # get rid of punctuation
words = [[word.strip()] for word in sentence.split(" ") if word.strip()]
if not words:

no words to process in the sentence, fail the tuple
self.fail(tup)
return

for word in words:
self.emit([word])

tuple acknowledgement is handled automatically

The bolt implementation is even simpler. We simply override the default process() method which streamparse
calls when a tuple has been emitted by an incoming spout or bolt. You are welcome to do whatever processing you
would like in this method and can further emit tuples or not depending on the purpose of your bolt.

If your process() method completes without raising an Exception, streamparse will automatically ensure any emits
you have are anchored to the current tuple being processed and acknowledged after process() completes.

If an Exception is raised while process() is called, streamparse automatically fails the current tuple prior to killing
the Python process.

1.5.1 Failed Tuples

In the example above, we added the ability to fail a sentence tuple if it did not provide any words. What happens
when we fail a tuple? Storm will send a “fail” message back to the spout where the tuple originated from (in this case
SentenceSpout) and streamparse calls the spout’s fail() method. It’s then up to your spout implementation to
decide what to do. A spout could retry a failed tuple, send an error message, or kill the topology. See Dealing With
Errors for more discussion.

1.5.2 Bolt Configuration Options

You can disable the automatic acknowleding, anchoring or failing of tuples by adding class variables set to false for:
auto_ack, auto_anchor or auto_fail. All three options are documented in streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

auto_ack = False
auto_fail = False

def process(self, tup):
do stuff...
if error:

1.5. Spouts and Bolts 7

streamparse Documentation, Release 3.13.1

self.fail(tup) # perform failure manually
self.ack(tup) # perform acknowledgement manually

1.5.3 Handling Tick Tuples

Ticks tuples are built into Storm to provide some simple forms of cron-like behaviour without actually having to use
cron. You can receive and react to tick tuples as timer events with your python bolts using streamparse too.

The first step is to override process_tick() in your custom Bolt class. Once this is overridden, you can set the
storm option topology.tick.tuple.freq.secs=<frequency> to cause a tick tuple to be emitted every
<frequency> seconds.

You can see the full docs for process_tick() in streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

def process_tick(self, freq):
An action we want to perform at some regular interval...
self.flush_old_state()

Then, for example, to cause process_tick() to be called every 2 seconds on all of your bolts that override it,
you can launch your topology under sparse run by setting the appropriate -o option and value as in the following
example:

$ sparse run -o "topology.tick.tuple.freq.secs=2" ...

1.6 Remote Deployment

1.6.1 Setting up a Storm Cluster

See Storm’s Setting up a Storm Cluster.

1.6.2 Submit

When you are satisfied that your topology works well via testing with:

> sparse run -d

You can submit your topology to a remote Storm cluster using the command:

sparse submit [--environment <env>] [--name <topology>] [-dv]

Before submitting, you have to have at least one environment configured in your project’s config.json file. Let’s
create a sample environment called “prod” in our config.json file:

{
"serializer": "json",
"topology_specs": "topologies/",

8 Chapter 1. Quickstart

https://storm.apache.org/documentation/Setting-up-a-Storm-cluster.html

streamparse Documentation, Release 3.13.1

"virtualenv_specs": "virtualenvs/",
"envs": {

"prod": {
"user": "storm",
"nimbus": "storm1.my-cluster.com",
"workers": [

"storm1.my-cluster.com",
"storm2.my-cluster.com",
"storm3.my-cluster.com"

],
"log": {

"path": "/var/log/storm/streamparse",
"file": "pystorm_{topology_name}_{component_name}_{task_id}_{pid}.log

→˓",
"max_bytes": 100000,
"backup_count": 10,
"level": "info"

},
"use_ssh_for_nimbus": true,
"virtualenv_root": "/data/virtualenvs/"

}
}

}

We’ve now defined a prod environment that will use the user storm when deploying topologies. Before submitting
the topology though, streamparse will automatically take care of instaling all the dependencies your topology requires.
It does this by sshing into everyone of the nodes in the workers config variable and building a virtualenv using the
the project’s local virtualenvs/<topology_name>.txt requirements file.

This implies a few requirements about the user you specify per environment:

1. Must have ssh access to all servers in your Storm cluster

2. Must have write access to the virtualenv_root on all servers in your Storm cluster

streamparse also assumes that virtualenv is installed on all Storm servers.

Once an environment is configured, we could deploy our wordcount topology like so:

> sparse submit

Seeing as we have only one topology and environment, we don’t need to specify these explicitly. streamparse will
now:

1. Package up a JAR containing all your Python source files

2. Build a virtualenv on all your Storm workers (in parallel)

3. Submit the topology to the nimbus server

1.6.3 Disabling & Configuring Virtualenv Creation

If you do not have ssh access to all of the servers in your Storm cluster, but you know they have all of the requirements
for your Python code installed, you can set "use_virtualenv" to false in config.json.

If you have virtualenvs on your machines that you would like streamparse to use, but not update or manage, you can
set "install_virtualenv" to false in config.json.

If you would like to pass command-line flags to virtualenv, you can set "virtualenv_flags" in config.json,
for example:

1.6. Remote Deployment 9

streamparse Documentation, Release 3.13.1

"virtualenv_flags": "-p /path/to/python"

Note that this only applies when the virtualenv is created, not when an existing virtualenv is used.

If you would like to share a single virtualenv across topologies, you can set "virtualenv_name" in config.
json which overrides the default behaviour of using the topology name for virtualenv. Updates to a shared virtualenv
should be done after shutting down topologies, as code changes in running topologies may cause errors.

1.6.4 Using unofficial versions of Storm

If you wish to use streamparse with unofficial versions of storm (such as the HDP Storm) you should set
:repositories in your project.clj to point to the Maven repository containing the JAR you want to use,
and set the version in :dependencies to match the desired version of Storm.

For example, to use the version supplied by HDP, you would set :repositories to:

:repositories {"HDP Releases" "http://repo.hortonworks.com/content/
repositories/releases"}

1.6.5 Local Clusters

Streamparse assumes that your Storm cluster is not on your local machine. If it is, such as the case with VMs or
Docker images, change "use_ssh_for_nimbus" in config.json to false.

1.6.6 Setting Submit Options in config.json

If you frequently use the same options to sparse submit in your project, you can set them in config.json
using the options key in your environment settings. For example:

{
"topology_specs": "topologies/",
"virtualenv_specs": "virtualenvs/",
"envs": {

"vagrant": {
"user": "vagrant",
"nimbus": "streamparse-box",
"workers": [

"streamparse-box"
],
"virtualenv_root": "/data/virtualenvs",
"options": {

"topology.environment": {
"LD_LIBRARY_PATH": "/usr/local/lib/"

}
}

}
}

}

You can also set the --worker and --acker parameters in config.json via the worker_count and
acker_count keys in your environment settings.

{
"topology_specs": "topologies/",

10 Chapter 1. Quickstart

streamparse Documentation, Release 3.13.1

"virtualenv_specs": "virtualenvs/",
"envs": {

"vagrant": {
"user": "vagrant",
"nimbus": "streamparse-box",
"workers": [

"streamparse-box"
],
"virtualenv_root": "/data/virtualenvs",
"acker_count": 1,
"worker_count": 1

}
}

}

1.6.7 Logging

The Storm supervisor needs to have access to the log.path directory for logging to work (in the example above, /
var/log/storm/streamparse). If you have properly configured the log.path option in your config, stream-
parse will use the value for the log.file option to set up log files for each Storm worker in this path. The filename
can be customized further by using certain named placeholders. The default filename is set to:

pystorm_{topology_name}_{component_name}_{task_id}_{pid}.log

Where:

• topology_name: is the topology.name variable set in Storm

• component_name: is the name of the currently executing component as defined in your topology definition
file (.clj file)

• task_id: is the task ID running this component in the topology

• pid: is the process ID of the Python process

streamparse uses Python’s logging.handlers.RotatingFileHandler and by default will only save 10 1
MB log files (10 MB in total), but this can be tuned with the log.max_bytes and log.backup_count variables.

The default logging level is set to INFO, but if you can tune this with the log.level setting which can be one
of critical, error, warning, info or debug. Note that if you perform sparse run or sparse submit with the
--debug set, this will override your log.level setting and set the log level to debug.

When running your topology locally via sparse run, your log path will be automatically set to /path/to/
your/streamparse/project/logs.

New in version 3.0.0.

1.6. Remote Deployment 11

streamparse Documentation, Release 3.13.1

12 Chapter 1. Quickstart

CHAPTER 2

Topologies

Storm topologies are described as a Directed Acyclic Graph (DAG) of Storm components, namely bolts and spouts.

2.1 Topology DSL

To simplify the process of creating Storm topologies, streamparse features a Python Topology DSL. It lets you specify
topologies as complex as those you can in Java or Clojure, but in concise, readable Python.

Topology files are located in topologies in your streamparse project folder. There can be any number of topology
files for your project in this directory.

• topologies/my_topology.py

• topologies/my_other_topology.py

• topologies/my_third_topology.py

• . . .

A valid Topology may only have Bolt and Spout attributes.

2.1.1 Simple Python Example

The first step to putting together a topology, is creating the bolts and spouts, so let’s assume we have the following
bolt and spout:

from collections import Counter

from redis import StrictRedis

from streamparse import Bolt

class WordCountBolt(Bolt):

13

https://en.wikipedia.org/wiki/Domain-specific_language
https://github.com/apache/storm/blob/07629c1f898ebb0cedcc19e15e4813692b6a9345/examples/storm-starter/src/jvm/org/apache/storm/starter/WordCountTopology.java
https://github.com/apache/storm/blob/07629c1f898ebb0cedcc19e15e4813692b6a9345/examples/storm-starter/src/clj/org/apache/storm/starter/clj/word_count.clj

streamparse Documentation, Release 3.13.1

outputs = ['word', 'count']

def initialize(self, conf, ctx):
self.counter = Counter()
self.total = 0

def _increment(self, word, inc_by):
self.counter[word] += inc_by
self.total += inc_by

def process(self, tup):
word = tup.values[0]
self._increment(word, 10 if word == "dog" else 1)
if self.total % 1000 == 0:

self.logger.info("counted %i words", self.total)
self.emit([word, self.counter[word]])

class RedisWordCountBolt(Bolt):
def initialize(self, conf, ctx):

from itertools import cycle

from streamparse import Spout

class WordSpout(Spout):
outputs = ['word']

def initialize(self, stormconf, context):
self.words = cycle(['dog', 'cat', 'zebra', 'elephant'])

def next_tuple(self):
word = next(self.words)
self.emit([word])

One important thing to note is that we have added an outputs attribute to these classes, which specify the names of
the output fields that will be produced on their default streams. If we wanted to specify multiple streams, we could
do that by specifying a list of Stream objects.

Now let’s hook up the bolt to read from the spout:

"""
Word count topology (in memory)
"""

from streamparse import Grouping, Topology

from bolts import WordCountBolt
from spouts import WordSpout

class WordCount(Topology):
word_spout = WordSpout.spec()
count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields('word')},

par=2)

14 Chapter 2. Topologies

streamparse Documentation, Release 3.13.1

Note: Your project’s src directory gets added to sys.path before your topology is imported, so you should use
absolute imports based on that.

As you can see, streamparse.Bolt.spec() and streamparse.Spout.spec() methods allow us to spec-
ify information about the components in your topology and how they connect to each other. Their respective docstrings
outline all of the possible ways they can be used.

2.1.2 Java Components

The topology DSL fully supports JVM-based bolts and spouts via the JavaBolt and JavaSpout classes.

Here’s an example of how we would use the Storm Kafka Spout:

"""
Pixel count topology
"""

from streamparse import Grouping, JavaSpout, Topology

from bolts.pixel_count import PixelCounterBolt
from bolts.pixel_deserializer import PixelDeserializerBolt

class PixelCount(Topology):
pixel_spout = JavaSpout.spec(name="pixel-spout",

full_class_name="pixelcount.spouts.PixelSpout",
args_list=[],
outputs=["pixel"])

pixel_deserializer = PixelDeserializerBolt.spec(name='pixel-deserializer-bolt',
inputs=[pixel_spout])

pixel_counter = PixelCounterBolt.spec(name='pixel-count-bolt',
inputs={pixel_deserializer:

Grouping.fields('url')},
config={"topology.tick.tuple.freq.secs": 1})

One limitation of the Thrift interface we use to send the topology to Storm is that the constructors for Java components
can only be passed basic Python data types: bool, bytes, float, int, and str.

Note: If you are passing strings as constructor arguments to Java components via the args_list parameter, you
must use unicode literals to do so in Python 2. Otherwise, Storm will raise an exception.

2.1.3 Components in Other Languages

If you have components that are written in languages other than Java or Python, you can have those as part of your
topology as well—assuming you’re using the corresponding multi-lang library for that language.

To do that you just need to use the streamparse.ShellBolt.spec() and streamparse.ShellSpout.
spec() methods. They take command and script arguments to specify a binary to run and its string-separated
arguments.

2.1. Topology DSL 15

http://storm.apache.org/releases/current/storm-kafka.html

streamparse Documentation, Release 3.13.1

2.1.4 Multiple Streams

To specify that a component has multiple output streams, instead of using a list of strings for outputs, you must
specify a list of Stream objects, as shown below.

class FancySpout(Spout):
outputs = [Stream(fields=['good_data'], name='default'),

Stream(fields=['bad_data'], name='errors')]

To select one of those streams as the input for a downstream Bolt, you simply use [] to specify the stream you want.
Without any stream specified, the default stream will be used.

class ExampleTopology(Topology):
fancy_spout = FancySpout.spec()
error_bolt = ErrorBolt.spec(inputs=[fancy_spout['errors']])
process_bolt = ProcessBolt.spec(inputs=[fancy_spout])

2.1.5 Groupings

By default, Storm uses a SHUFFLE grouping to route tuples to particular executors for a given component, but you can
also specify other groupings by using the appropriate Grouping attribute. The most common grouping is probably
the fields() grouping, which will send all the tuples with the same value for the specified fields to the same
executor. This can be seen in the prototypical word count topology:

"""
Word count topology (in memory)
"""

from streamparse import Grouping, Topology

from bolts import WordCountBolt
from spouts import WordSpout

class WordCount(Topology):
word_spout = WordSpout.spec()
count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields('word')},

par=2)

2.1.6 Topology Cycles

On rare occassions, you may want to create a cyclical topology. This may not seem easily done with the
current topology DSL, but there is a workaround you can use: manually declaring a temporary lower-level
:class:~streamparse.thrift.GlobalStreamId that you can refer to in multiple places.

The following code creates a Topology with a cycle between its two Bolts.

from streamparse.thrift import GlobalStreamId

Create a reference to B's output stream before we even declare Topology
b_stream = GlobalStreamId(componentId='b_bolt', streamId='default')

class CyclicalTopology(Topology):
some_spout = SomeSpout.spec()
Include our saved stream in your list of inputs for A

16 Chapter 2. Topologies

streamparse Documentation, Release 3.13.1

a_bolt = A.spec(name="A", inputs=[some_spout, b_stream])
Have B get input from A like normal
b_bolt = B.spec(name="B", inputs=[a_bolt])

2.1.7 Topology-Level Configuration

If you want to set a config option for all components in your topology, like topology.environment, you can do
that by adding a config class attribute to your Topology that is a dict mapping from option names to their values.
For example:

class WordCount(Topology):
config = {'topology.environment': {'LD_LIBRARY_PATH': '/usr/local/lib/'}}
...

2.2 Running Topologies

2.2.1 What Streamparse Does

When you run a topology either locally or by submitting to a cluster, streamparse will

1. Bundle all of your code into a JAR

2. Build a Thrift Topology struct out of your Python topology definition.

3. Pass the Thrift Topology struct to Nimbus on your Storm cluster.

If you invoked streamparse with sparse run, your code is executed directly from the src/ directory.

If you submitted to a cluster with sparse submit, streamparse uses lein to compile the src directory into a jar
file, which is run on the cluster. Lein uses the project.clj file located in the root of your project. This file is a
standard lein project file and can be customized according to your needs.

2.2.2 Dealing With Errors

When detecting an error, bolt code can call its fail() method in order to have Storm call the respective spout’s
fail() method. Known error/failure cases result in explicit callbacks to the spout using this approach.

Exceptions which propagate without being caught will cause the component to crash. On sparse run, the entire
topology will stop execution. On a running cluster (i.e. sparse submit), Storm will auto-restart the crashed
component and the spout will receive a fail() call.

If the spout’s fail handling logic is to hold back the tuple and not re-emit it, then things will keep going. If it re-emits it,
then it may crash that component again. Whether the topology is tolerant of the failure depends on how you implement
failure handling in your spout.

Common approaches are to:

• Append errant tuples to some sort of error log or queue for manual inspection later, while letting processing
continue otherwise.

• Attempt 1 or 2 retries before considering the tuple a failure, if the error was likely an transient problem.

• Ignore the failed tuple, if appropriate to the application.

2.2. Running Topologies 17

streamparse Documentation, Release 3.13.1

2.3 Parallelism and Workers

In general, use the ‘‘par‘‘ “parallelism hint” parameter per spout and bolt in your configuration to control the
number of Python processes per component.

Reference: Understanding the Parallelism of a Storm Topology

Storm parallelism entities:

• A worker process is a JVM, i.e. a Java process.

• An executor is a thread that is spawned by a worker process.

• A task performs the actual data processing. (To simplify, you can think of it as a Python callable.)

Spout and bolt specs take a par keyword to provide a parallelism hint to Storm for the number of executors (threads)
to use for the given spout/bolt; for example, par=2 is a hint to use two executors. Because streamparse imple-
ments spouts and bolts as independent Python processes, setting par=N results in N Python processes for the given
spout/bolt.

Many streamparse applications will need only to set this parallelism hint to control the number of resulting Python
processes when tuning streamparse configuration. For the underlying topology workers, streamparse sets a default of
2 workers, which are independent JVM processes for Storm. This allows a topology to continue running when one
worker process dies; the other is around until the dead process restarts.

Both sparse run and sparse submit accept a -p N command-line flag to set the number of topology workers
to N. For convenience, this flag also sets the number of Storm’s underlying messaging reliability acker bolts to the
same N value. In the event that you need it (and you understand Storm ackers), use the -a and -w command-line flags
instead of -p to control the number of acker bolts and the number of workers, respectively. The sparse command
does not support Storm’s rebalancing features; use sparse submit -f -p N to kill the running topology and
redeploy it with N workers.

Note that the underlying Storm thread implementation, LMAX Disruptor, is designed with high-performance inter-
thread messaging as a goal. Rule out Python-level issues when tuning your topology:

• bottlenecks where the number of spout and bolt processes are out of balance

• serialization/deserialization overhead of more data emitted than you need

• slow routines/callables in your code

18 Chapter 2. Topologies

https://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html
https://storm.apache.org/documentation/Guaranteeing-message-processing.html
https://storm.apache.org/2012/08/02/storm080-released.html
http://lmax-exchange.github.io/disruptor/

CHAPTER 3

API

3.1 Tuples

class streamparse.Tuple(id, component, stream, task, values)
Storm’s primitive data type passed around via streams.

Variables

• id – the ID of the Tuple.

• component – component that the Tuple was generated from.

• stream – the stream that the Tuple was emitted into.

• task – the task the Tuple was generated from.

• values – the payload of the Tuple where data is stored.

You should never have to instantiate an instance of a streamparse.Tuple yourself as streamparse handles this
for you prior to, for example, a streamparse.Bolt’s process() method being called.

None of the emit methods for bolts or spouts require that you pass a streamparse.Tuple instance.

3.2 Components

Both streamparse.Bolt and streamparse.Spout inherit from a common base-class, streamparse.
storm.component.Component. It extends pystorm’s code for handling Multi-Lang IPC between Storm and
Python and adds suport for our Python Topology DSL.

3.2.1 Spouts

Spouts are data sources for topologies, they can read from any data source and emit tuples into streams.

19

https://docs.python.org/2/library/functions.html#id
https://storm.apache.org/documentation/Multilang-protocol.html
https://storm.apache.org/documentation/Multilang-protocol.html

streamparse Documentation, Release 3.13.1

class streamparse.Spout(input_stream=<open file ’<stdin>’, mode ’r’>, output_stream=<open file
’<stdout>’, mode ’w’>, rdb_signal=u’SIGUSR1’, serializer=u’json’)

Bases: pystorm.spout.Spout, streamparse.storm.spout.ShellSpout

pystorm Spout with streamparse-specific additions

ack(tup_id)
Called when a bolt acknowledges a Tuple in the topology.

Parameters tup_id (str) – the ID of the Tuple that has been fully acknowledged in the
topology.

activate()
Called when the Spout has been activated after being deactivated.

Note: This requires at least Storm 1.1.0.

deactivate()
Called when the Spout has been deactivated.

Note: This requires at least Storm 1.1.0.

emit(tup, tup_id=None, stream=None, direct_task=None, need_task_ids=False)
Emit a spout Tuple message.

Parameters

• tup (list or tuple) – the Tuple to send to Storm, should contain only JSON-
serializable data.

• tup_id (str) – the ID for the Tuple. Leave this blank for an unreliable emit.

• stream (str) – ID of the stream this Tuple should be emitted to. Leave empty to emit
to the default stream.

• direct_task (int) – the task to send the Tuple to if performing a direct emit.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple
was emitted (default: False).

Returns None, unless need_task_ids=True, in which case it will be a list of task IDs
that the Tuple was sent to if. Note that when specifying direct_task, this will be equal to
[direct_task].

fail(tup_id)
Called when a Tuple fails in the topology

A spout can choose to emit the Tuple again or ignore the fail. The default is to ignore.

Parameters tup_id (str) – the ID of the Tuple that has failed in the topology either due to a
bolt calling fail() or a Tuple timing out.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

20 Chapter 3. API

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#tuple
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict

streamparse Documentation, Release 3.13.1

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

next_tuple()
Implement this function to emit Tuples as necessary.

This function should not block, or Storm will think the spout is dead. Instead, let it return and pystorm
will send a noop to storm, which lets it know the spout is functioning.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

3.2. Components 21

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

classmethod spec(name=None, par=None, config=None)
Create a ShellBoltSpec for a Python Spout.

This spec represents this Spout in a Topology .

Parameters

• name (str) – Name of this Spout. Defaults to name of Topology attribute this is assigned
to.

• par (int) – Parallelism hint for this Spout. For Python Components, this works out to be
the number of Python processes running it in the the topology (across all machines). See
Parallelism and Workers.

Note: This can also be specified as an attribute of your Spout subclass.

• config (dict) – Component-specific config settings to pass to Storm.

Note: This can also be specified as an attribute of your Spout subclass.

Note: This method does not take a outputs argument because outputs should be an attribute of your
Spout subclass.

class streamparse.ReliableSpout(*args, **kwargs)
Bases: pystorm.spout.ReliableSpout, streamparse.storm.spout.Spout

pystorm ReliableSpout with streamparse-specific additions

ack(tup_id)
Called when a bolt acknowledges a Tuple in the topology.

Parameters tup_id (str) – the ID of the Tuple that has been fully acknowledged in the
topology.

activate()
Called when the Spout has been activated after being deactivated.

Note: This requires at least Storm 1.1.0.

deactivate()
Called when the Spout has been deactivated.

Note: This requires at least Storm 1.1.0.

emit(tup, tup_id=None, stream=None, direct_task=None, need_task_ids=False)
Emit a spout Tuple & add metadata about it to unacked_tuples.

22 Chapter 3. API

https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

In order for this to work, tup_id is a required parameter.

See Bolt.emit().

fail(tup_id)
Called when a Tuple fails in the topology

A reliable spout will replay a failed tuple up to max_fails times.

Parameters tup_id (str) – the ID of the Tuple that has failed in the topology either due to a
bolt calling fail() or a Tuple timing out.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

next_tuple()
Implement this function to emit Tuples as necessary.

This function should not block, or Storm will think the spout is dead. Instead, let it return and pystorm
will send a noop to storm, which lets it know the spout is functioning.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

3.2. Components 23

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

read_message()
Read a message from Storm via serializer.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

spec(name=None, par=None, config=None)
Create a ShellBoltSpec for a Python Spout.

This spec represents this Spout in a Topology .

Parameters

• name (str) – Name of this Spout. Defaults to name of Topology attribute this is assigned
to.

• par (int) – Parallelism hint for this Spout. For Python Components, this works out to be
the number of Python processes running it in the the topology (across all machines). See
Parallelism and Workers.

Note: This can also be specified as an attribute of your Spout subclass.

• config (dict) – Component-specific config settings to pass to Storm.

Note: This can also be specified as an attribute of your Spout subclass.

Note: This method does not take a outputs argument because outputs should be an attribute of your
Spout subclass.

3.2.2 Bolts

class streamparse.Bolt(*args, **kwargs)
Bases: pystorm.bolt.Bolt, streamparse.storm.bolt.ShellBolt

pystorm Bolt with streamparse-specific additions

24 Chapter 3. API

streamparse Documentation, Release 3.13.1

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to acknowledge.

emit(tup, stream=None, anchors=None, direct_task=None, need_task_ids=False)
Emit a new Tuple to a stream.

Parameters

• tup (list or pystorm.component.Tuple) – the Tuple payload to send to Storm,
should contain only JSON-serializable data.

• stream (str) – the ID of the stream to emit this Tuple to. Specify None to emit to
default stream.

• anchors (list) – IDs the Tuples (or pystorm.component.Tuple instances)
which the emitted Tuples should be anchored to. If auto_anchor is set to True and
you have not specified anchors, anchorswill be set to the incoming/most recent Tuple
ID(s).

• direct_task (int) – the task to send the Tuple to.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple
was emitted (default: False).

Returns None, unless need_task_ids=True, in which case it will be a list of task IDs
that the Tuple was sent to if. Note that when specifying direct_task, this will be equal to
[direct_task].

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to fail (its id if str).

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

3.2. Components 25

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

process(tup)
Process a single Tuple pystorm.component.Tuple of input

This should be overridden by subclasses. pystorm.component.Tuple objects contain metadata
about which component, stream and task it came from. The actual values of the Tuple can be accessed by
calling tup.values.

Parameters tup (pystorm.component.Tuple) – the Tuple to be processed.

process_tick(tup)
Process special ‘tick Tuples’ which allow time-based behaviour to be included in bolts.

Default behaviour is to ignore time ticks. This should be overridden by subclasses who wish to react to
timer events via tick Tuples.

Tick Tuples will be sent to all bolts in a toplogy when the storm configuration option ‘topol-
ogy.tick.tuple.freq.secs’ is set to an integer value, the number of seconds.

Parameters tup (pystorm.component.Tuple) – the Tuple to be processed.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

read_tuple()
Read a tuple from the pipe to Storm.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

26 Chapter 3. API

streamparse Documentation, Release 3.13.1

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

classmethod spec(name=None, inputs=None, par=None, config=None)
Create a ShellBoltSpec for a Python Bolt.

This spec represents this Bolt in a Topology .

Parameters

• name (str) – Name of this Bolt. Defaults to name of Topology attribute this is assigned
to.

• inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

1. A dict mapping from ComponentSpec to Grouping.

2. A list of Stream or ComponentSpec.

• par (int) – Parallelism hint for this Bolt. For Python Components, this works out to be
the number of Python processes running it in the the topology (across all machines). See
Parallelism and Workers.

Note: This can also be specified as an attribute of your Bolt subclass.

• config (dict) – Component-specific config settings to pass to Storm.

Note: This can also be specified as an attribute of your Bolt subclass.

Note: This method does not take a outputs argument because outputs should be an attribute of your
Bolt subclass.

class streamparse.BatchingBolt(*args, **kwargs)
Bases: pystorm.bolt.BatchingBolt, streamparse.storm.bolt.Bolt

pystorm BatchingBolt with streamparse-specific additions

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to acknowledge.

emit(tup, **kwargs)
Modified emit that will not return task IDs after emitting.

See pystorm.component.Bolt for more information.

Returns None.

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to fail (its id if str).

3.2. Components 27

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

group_key(tup)
Return the group key used to group Tuples within a batch.

By default, returns None, which put all Tuples in a single batch, effectively just time-based batching.
Override this to create multiple batches based on a key.

Parameters tup (pystorm.component.Tuple) – the Tuple used to extract a group key

Returns Any hashable value.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

process(tup)
Group non-tick Tuples into batches by group_key.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

process_batch(key, tups)
Process a batch of Tuples. Should be overridden by subclasses.

Parameters

• key (hashable) – the group key for the list of batches.

• tups (list) – a list of pystorm.component.Tuple s for the group.

28 Chapter 3. API

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

process_batches()
Iterate through all batches, call process_batch on them, and ack.

Separated out for the rare instances when we want to subclass BatchingBolt and customize what mecha-
nism causes batches to be processed.

process_tick(tick_tup)
Increment tick counter, and call process_batch for all current batches if tick counter exceeds
ticks_between_batches.

See pystorm.component.Bolt for more information.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

read_tuple()
Read a tuple from the pipe to Storm.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

spec(name=None, inputs=None, par=None, config=None)
Create a ShellBoltSpec for a Python Bolt.

This spec represents this Bolt in a Topology .

Parameters

3.2. Components 29

streamparse Documentation, Release 3.13.1

• name (str) – Name of this Bolt. Defaults to name of Topology attribute this is assigned
to.

• inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

1. A dict mapping from ComponentSpec to Grouping.

2. A list of Stream or ComponentSpec.

• par (int) – Parallelism hint for this Bolt. For Python Components, this works out to be
the number of Python processes running it in the the topology (across all machines). See
Parallelism and Workers.

Note: This can also be specified as an attribute of your Bolt subclass.

• config (dict) – Component-specific config settings to pass to Storm.

Note: This can also be specified as an attribute of your Bolt subclass.

Note: This method does not take a outputs argument because outputs should be an attribute of your
Bolt subclass.

class streamparse.TicklessBatchingBolt(*args, **kwargs)
Bases: pystorm.bolt.TicklessBatchingBolt, streamparse.storm.bolt.BatchingBolt

pystorm TicklessBatchingBolt with streamparse-specific additions

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to acknowledge.

emit(tup, **kwargs)
Modified emit that will not return task IDs after emitting.

See pystorm.component.Bolt for more information.

Returns None.

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or pystorm.component.Tuple) – the Tuple to fail (its id if str).

group_key(tup)
Return the group key used to group Tuples within a batch.

By default, returns None, which put all Tuples in a single batch, effectively just time-based batching.
Override this to create multiple batches based on a key.

Parameters tup (pystorm.component.Tuple) – the Tuple used to extract a group key

Returns Any hashable value.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

30 Chapter 3. API

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

Parameters

• storm_conf (dict) – the Storm configuration for this component. This is the con-
figuration provided to the topology, merged in with cluster configuration on the worker
node.

• context (dict) – information about the component’s place within the topology such
as: task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you specify. In almost
all cases, you are better of using Component.logger and not setting pystorm.log.path, be-
cause that will use a pystorm.component.StormHandler to do the filtering on the Python side
(instead of on the Java side after taking the time to serialize your message and send it to Storm).

process(tup)
Group non-tick Tuples into batches by group_key.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

process_batch(key, tups)
Process a batch of Tuples. Should be overridden by subclasses.

Parameters

• key (hashable) – the group key for the list of batches.

• tups (list) – a list of pystorm.component.Tuple s for the group.

process_batches()
Iterate through all batches, call process_batch on them, and ack.

Separated out for the rare instances when we want to subclass BatchingBolt and customize what mecha-
nism causes batches to be processed.

process_tick(tick_tup)
Just ack tick tuples and ignore them.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

3.2. Components 31

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

streamparse Documentation, Release 3.13.1

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm via serializer.

read_tuple()
Read a tuple from the pipe to Storm.

report_metric(name, value)
Report a custom metric back to Storm.

Parameters

• name – Name of the metric. This can be anything.

• value – Value of the metric. This is usually a number.

Only supported in Storm 0.9.3+.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

spec(name=None, inputs=None, par=None, config=None)
Create a ShellBoltSpec for a Python Bolt.

This spec represents this Bolt in a Topology .

Parameters

• name (str) – Name of this Bolt. Defaults to name of Topology attribute this is assigned
to.

• inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

1. A dict mapping from ComponentSpec to Grouping.

2. A list of Stream or ComponentSpec.

• par (int) – Parallelism hint for this Bolt. For Python Components, this works out to be
the number of Python processes running it in the the topology (across all machines). See
Parallelism and Workers.

Note: This can also be specified as an attribute of your Bolt subclass.

• config (dict) – Component-specific config settings to pass to Storm.

32 Chapter 3. API

streamparse Documentation, Release 3.13.1

Note: This can also be specified as an attribute of your Bolt subclass.

Note: This method does not take a outputs argument because outputs should be an attribute of your
Bolt subclass.

3.3 Logging

class streamparse.StormHandler(serializer)
Bases: logging.Handler

Handler that will send messages back to Storm.

Initialize handler

Parameters serializer – The serializer of the component this handler is being used for.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. If exception information is present, it is formatted
using traceback.print_exception and sent to Storm.

3.4 Topology DSL

class streamparse.Topology
Class to define a Storm topology in a Python DSL.

class streamparse.Grouping
A Grouping describes how Tuples should be distributed to the tasks of a Bolt listening on a particular stream.

When no Grouping is specified, it defaults to SHUFFLE for normal streams, and DIRECT for direct streams.

Variables

• SHUFFLE – Tuples are randomly distributed across the Bolt’s tasks in a way such that each
Bolt is guaranteed to get an equal number of Tuples.

• GLOBAL – The entire stream goes to a single one of the Bolt’s tasks. Specifically, it goes to
the task with the lowest id.

• DIRECT – This is a special kind of grouping. A stream grouped this way means that the
producer of the Tuple decides which task of the consumer will receive this Tuple. Direct
groupings can only be declared on streams that have been declared as direct streams. Tu-
ples emitted to a direct stream must be emitted using the the direct_task parameter to the
streamparse.Bolt.emit() and streamparse.Spout.emit() methods.

• ALL – The stream is replicated across all the Bolt’s tasks. Use this grouping with care.

• NONE – This grouping specifies that you don’t care how the stream is grouped. Currently,
none groupings are equivalent to shuffle groupings. Eventually though, Storm will push
down Bolts with none groupings to execute in the same thread as the Bolt or Spout they
subscribe from (when possible).

3.3. Logging 33

streamparse Documentation, Release 3.13.1

• LOCAL_OR_SHUFFLE – If the target Bolt has one or more tasks in the same worker pro-
cess, Tuples will be shuffled to just those in-process tasks. Otherwise, this acts like a normal
shuffle grouping.

classmethod custom_object(java_class_name, arg_list)
Tuples will be assigned to tasks by the given Java class.

classmethod custom_serialized(java_serialized)
Tuples will be assigned to tasks by the given Java serialized class.

classmethod fields(*fields)
The stream is partitioned by the fields specified in the grouping.

For example, if the stream is grouped by the user-id field, Tuples with the same user-id will always go to
the same task, but Tuples with different user-id’s may go to different tasks.

class streamparse.Stream(fields=None, name=’default’, direct=False)
A Storm output stream

Parameters

• fields (list or tuple of str) – Field names for this stream.

• name (str) – Name of stream. Defaults to default.

• direct (bool) – Whether or not this stream is direct. Default is False. See DIRECT.

class streamparse.JavaBolt(input_stream=<open file ’<stdin>’, mode ’r’>, output_stream=<open
file ’<stdout>’, mode ’w’>, rdb_signal=u’SIGUSR1’, serial-
izer=u’json’)

classmethod spec(name=None, serialized_java=None, full_class_name=None, args_list=None,
inputs=None, par=1, config=None, outputs=None)

Create a JavaBoltSpec for a Java Bolt.

This spec represents this Bolt in a Topology .

You must add the appropriate entries to your classpath by editing your project’s project.clj file in
order for this to work.

Parameters

• name (str) – Name of this Bolt. Defaults to name of Topology attribute this is assigned
to.

• serialized_java (bytes) – Serialized Java code representing the class. You must
either specify this, or both full_class_name and args_list.

• full_class_name (str) – Fully qualified class name (including the package name)

• args_list (list of basic data types) – A list of arguments to be passed to the constructor
of this class.

• inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

1. A dict mapping from ComponentSpec to Grouping.

2. A list of Stream or ComponentSpec.

• par (int) – Parallelism hint for this Bolt. For Python Components, this works out to be
the number of Python processes running it in the the topology (across all machines). See
Parallelism and Workers.

• config (dict) – Component-specific config settings to pass to Storm.

34 Chapter 3. API

streamparse Documentation, Release 3.13.1

• outputs – Outputs this JavaBolt will produce. Acceptable forms are:

1. A list of Stream objects describing the fields output on each stream.

2. A list of str representing the fields output on the default stream.

class streamparse.JavaSpout(input_stream=<open file ’<stdin>’, mode ’r’>, out-
put_stream=<open file ’<stdout>’, mode ’w’>,
rdb_signal=u’SIGUSR1’, serializer=u’json’)

classmethod spec(name=None, serialized_java=None, full_class_name=None, args_list=None,
par=1, config=None, outputs=None)

Create a JavaSpoutSpec for a Java Spout.

This spec represents this Spout in a Topology .

You must add the appropriate entries to your classpath by editing your project’s project.clj file in
order for this to work.

Parameters

• name (str) – Name of this Spout. Defaults to name of Topology attribute this is assigned
to.

• serialized_java (bytes) – Serialized Java code representing the class. You must
either specify this, or both full_class_name and args_list.

• full_class_name (str) – Fully qualified class name (including the package name)

• args_list (list of basic data types) – A list of arguments to be passed to the constructor
of this class.

• par (int) – Parallelism hint for this Spout. See Parallelism and Workers.

• config (dict) – Component-specific config settings to pass to Storm.

• outputs – Outputs this JavaSpout will produce. Acceptable forms are:

1. A list of Stream objects describing the fields output on each stream.

2. A list of str representing the fields output on the default stream.

class streamparse.ShellBolt(input_stream=<open file ’<stdin>’, mode ’r’>, out-
put_stream=<open file ’<stdout>’, mode ’w’>,
rdb_signal=u’SIGUSR1’, serializer=u’json’)

A Bolt that is started by running a command with a script argument.

classmethod spec(name=None, command=None, script=None, inputs=None, par=None, con-
fig=None, outputs=None)

Create a ShellBoltSpec for a non-Java, non-Python Bolt.

If you want to create a spec for a Python Bolt, use spec().

This spec represents this Bolt in a Topology .

Parameters

• name (str) – Name of this Bolt. Defaults to name of Topology attribute this is assigned
to.

• command (str) – Path to command the Storm will execute.

• script (str) – Arguments to command. Multiple arguments should just be separated by
spaces.

3.4. Topology DSL 35

streamparse Documentation, Release 3.13.1

• inputs – Streams that feed into this Bolt.

Two forms of this are acceptable:

1. A dict mapping from ComponentSpec to Grouping.

2. A list of Stream or ComponentSpec.

• par (int) – Parallelism hint for this Bolt. For shell Components, this works out to be
the number of running it in the the topology (across all machines). See Parallelism and
Workers.

• config (dict) – Component-specific config settings to pass to Storm.

• outputs – Outputs this ShellBolt will produce. Acceptable forms are:

1. A list of Stream objects describing the fields output on each stream.

2. A list of str representing the fields output on the default stream.

class streamparse.ShellSpout(input_stream=<open file ’<stdin>’, mode ’r’>, out-
put_stream=<open file ’<stdout>’, mode ’w’>,
rdb_signal=u’SIGUSR1’, serializer=u’json’)

classmethod spec(name=None, command=None, script=None, par=None, config=None, out-
puts=None)

Create a ShellSpoutSpec for a non-Java, non-Python Spout.

If you want to create a spec for a Python Spout, use spec().

This spec represents this Spout in a Topology .

Parameters

• name (str) – Name of this Spout. Defaults to name of Topology attribute this is assigned
to.

• command (str) – Path to command the Storm will execute.

• script (str) – Arguments to command. Multiple arguments should just be separated by
spaces.

• par (int) – Parallelism hint for this Spout. For shell Components, this works out to be the
number of processes running it in the the topology (across all machines). See Parallelism
and Workers.

• config (dict) – Component-specific config settings to pass to Storm.

• outputs – Outputs this ShellSpout will produce. Acceptable forms are:

1. A list of Stream objects describing the fields output on each stream.

2. A list of str representing the fields output on the default stream.

36 Chapter 3. API

CHAPTER 4

Developing Streamparse

4.1 Lein

Install Leiningen according to the instructions in the quickstart.

4.2 Local pip installation

In your virtualenv for this project, go into ~/repos/streamparse (where you cloned streamparse) and simply
run:

python setup.py develop

This will install a streamparse Python version into the virtualenv which is essentially symlinked to your local version.

NOTE: streamparse currently pip installs streamparse’s released version on remote clusters automatically. Therefore,
though this will work for local development, you’ll need to push streamparse somewhere pip installable (or change
requirements.txt) to make it pick up that version on a remote cluster.

4.3 Installing Storm pre-releases

You can clone Storm from Github here:

git clone git@github.com:apache/storm.git

There are tags available for releases, e.g.:

git checkout v1.0.1

To build a local Storm release, use:

37

streamparse Documentation, Release 3.13.1

mvn install
cd storm-dist/binary
mvn package

These steps will take awhile as they also run Storm’s internal unit and integration tests.

The first line will actually install Storm locally in your maven (.m2) repository. You can confirm this with:

ls ~/.m2/repository/org/apache/storm/storm-core/1.0.1

You should now be able to change your project.clj to include a reference to this new release.

Once you change that, you can run:

lein deps :tree | grep storm

To confirm it is using the upgraded Clojure 1.5.1 (changed in 0.9.2), run:

lein repl

38 Chapter 4. Developing Streamparse

CHAPTER 5

Frequently Asked Questions (FAQ)

5.1 General Questions

• Why use streamparse?

• Is streamparse compatible with Python 3?

• How can I contribute to streamparse?

• How do I trigger some code before or after I submit my topology?

• How should I install streamparse on the cluster nodes?

• Should I install Clojure?

• How do I deploy into a VPC?

• How do I override SSH settings?

• How do I dynamically generate the worker list?

5.1.1 Why use streamparse?

To lay your Python code out in topologies which can be automatically parallelized in a Storm cluster of machines. This
lets you scale your computation horizontally and avoid issues related to Python’s GIL. See Parallelism and Workers.

5.1.2 Is streamparse compatible with Python 3?

Yes, streamparse is fully compatible with Python 3 starting with version 3.3 which we use in our unit tests.

5.1.3 How can I contribute to streamparse?

Please see the CONTRIBUTING document in Github

39

https://github.com/Parsely/streamparse/blob/master/.travis.yml
https://github.com/Parsely/streamparse/blob/master/CONTRIBUTING.rst

streamparse Documentation, Release 3.13.1

5.1.4 How do I trigger some code before or after I submit my topology?

After you create a streamparse project using sparse quickstart, you’ll have a fabfile.py in that directory.
In that file, you can specify two functions (pre_submit and post_submit) which are expected to accept three
arguments:

• topology_name: the name of the topology being submitted

• env_name: the name of the environment where the topology is being submitted (e.g. "prod")

• env_config: the relevant config portion from the config.json file for the environment you are submitting
the topology to

Here is a sample fabfile.py file that sends a message to IRC after a topology is successfully submitted to prod.

my_project/fabfile.py
from __future__ import absolute_import, print_function, unicode_literals

from my_project import write_to_irc

def post_submit(topo_name, env_name, env_config):
if env_name == "prod":

write_to_irc("Deployed {} to {}".format(topo_name, env_name))

5.1.5 How should I install streamparse on the cluster nodes?

streamparse assumes your Storm servers have Python, pip, and virtualenv installed. After that, the installation of all
required dependencies (including streamparse itself) is taken care of via the config.json file for the streamparse project
and the sparse submit command.

5.1.6 Should I install Clojure?

No, the Java requirements for streamparse are identical to that of Storm itself. Storm requires Java and bundles Clojure
as a requirement, so you do not need to do any separate installation of Clojure. You just need Java on all Storm servers.

How do I deploy into a VPC?

Update your ~/.ssh/config to use a bastion host inside your VPC for your commands:

Host *.internal.example.com
ProxyCommand ssh bastion.example.com exec nc %h %p

If you don’t have a common subdomain you’ll have to list all of the hosts individually:

Host host1.example.com
ProxyCommand ssh bastion.example.com exec nc %h %p

...

Set up your streamparse config to use all of the hosts normally (without bastion host).

40 Chapter 5. Frequently Asked Questions (FAQ)

https://github.com/apache/storm/blob/5383ac375cb2955e3247d485e46f1f58bff62810/pom.xml#L320-L322
https://github.com/apache/storm/blob/5383ac375cb2955e3247d485e46f1f58bff62810/pom.xml#L320-L322

streamparse Documentation, Release 3.13.1

How do I override SSH settings?

It is highly recommended that you just modify your ~/.ssh/config file if you need to tweak settings for setting
up the SSH tunnel to your Nimbus server, but you can also set your SSH password or port in your config.json by
setting the ssh_password or ssh_port environment settings.

{
"topology_specs": "topologies/",
"virtualenv_specs": "virtualenvs/",
"envs": {

"prod": {
"user": "somebody",
"ssh_password": "THIS IS A REALLY BAD IDEA",
"ssh_port": 52,
"nimbus": "streamparse-box",
"workers": [

"streamparse-box"
],
"virtualenv_root": "/data/virtualenvs"

}
}

}

How do I dynamically generate the worker list?

In a small cluster it’s sufficient to specify the list of workers in config.json. However, if you have a large or
complex environment where workers are numerous or short-lived, streamparse supports querying the nimbus
server for a list of hosts.

An undefined list (empty or None) of workers will trigger the lookup. Explicitly defined hosts are preferred over a
lookup.

Lookups are configured on a per-environment basis, so the prod environment below uses the dynamic lookup, while
beta will not.

{
"topology_specs": "topologies/",
"virtualenv_specs": "virtualenvs/",
"envs": {

"prod": {
"nimbus": "streamparse-prod",
"virtualenv_root": "/data/virtualenvs"

},
"beta": {

"nimbus": "streamparse-beta",
"workers": [

"streamparse-beta"
],
"virtualenv_root": "/data/virtualenvs"

}
}

}

5.1. General Questions 41

streamparse Documentation, Release 3.13.1

42 Chapter 5. Frequently Asked Questions (FAQ)

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

43

streamparse Documentation, Release 3.13.1

44 Chapter 6. Indices and tables

Index

A
ack() (streamparse.BatchingBolt method), 27
ack() (streamparse.Bolt method), 24
ack() (streamparse.ReliableSpout method), 22
ack() (streamparse.Spout method), 20
ack() (streamparse.TicklessBatchingBolt method), 30
activate() (streamparse.ReliableSpout method), 22
activate() (streamparse.Spout method), 20

B
BatchingBolt (class in streamparse), 27
Bolt (class in streamparse), 24

C
custom_object() (streamparse.Grouping class method),

34
custom_serialized() (streamparse.Grouping class

method), 34

D
deactivate() (streamparse.ReliableSpout method), 22
deactivate() (streamparse.Spout method), 20

E
emit() (streamparse.BatchingBolt method), 27
emit() (streamparse.Bolt method), 25
emit() (streamparse.ReliableSpout method), 22
emit() (streamparse.Spout method), 20
emit() (streamparse.StormHandler method), 33
emit() (streamparse.TicklessBatchingBolt method), 30

F
fail() (streamparse.BatchingBolt method), 27
fail() (streamparse.Bolt method), 25
fail() (streamparse.ReliableSpout method), 23
fail() (streamparse.Spout method), 20
fail() (streamparse.TicklessBatchingBolt method), 30
fields() (streamparse.Grouping class method), 34

G
group_key() (streamparse.BatchingBolt method), 27
group_key() (streamparse.TicklessBatchingBolt method),

30
Grouping (class in streamparse), 33

I
initialize() (streamparse.BatchingBolt method), 28
initialize() (streamparse.Bolt method), 25
initialize() (streamparse.ReliableSpout method), 23
initialize() (streamparse.Spout method), 20
initialize() (streamparse.TicklessBatchingBolt method),

30
is_heartbeat() (streamparse.BatchingBolt method), 28
is_heartbeat() (streamparse.Bolt method), 25
is_heartbeat() (streamparse.ReliableSpout method), 23
is_heartbeat() (streamparse.Spout method), 21
is_heartbeat() (streamparse.TicklessBatchingBolt

method), 31
is_tick() (streamparse.BatchingBolt method), 28
is_tick() (streamparse.Bolt method), 25
is_tick() (streamparse.TicklessBatchingBolt method), 31

J
JavaBolt (class in streamparse), 34
JavaSpout (class in streamparse), 35

L
log() (streamparse.BatchingBolt method), 28
log() (streamparse.Bolt method), 25
log() (streamparse.ReliableSpout method), 23
log() (streamparse.Spout method), 21
log() (streamparse.TicklessBatchingBolt method), 31

N
next_tuple() (streamparse.ReliableSpout method), 23
next_tuple() (streamparse.Spout method), 21

45

streamparse Documentation, Release 3.13.1

P
process() (streamparse.BatchingBolt method), 28
process() (streamparse.Bolt method), 26
process() (streamparse.TicklessBatchingBolt method), 31
process_batch() (streamparse.BatchingBolt method), 28
process_batch() (streamparse.TicklessBatchingBolt

method), 31
process_batches() (streamparse.BatchingBolt method),

28
process_batches() (streamparse.TicklessBatchingBolt

method), 31
process_tick() (streamparse.BatchingBolt method), 29
process_tick() (streamparse.Bolt method), 26
process_tick() (streamparse.TicklessBatchingBolt

method), 31

R
raise_exception() (streamparse.BatchingBolt method), 29
raise_exception() (streamparse.Bolt method), 26
raise_exception() (streamparse.ReliableSpout method),

23
raise_exception() (streamparse.Spout method), 21
raise_exception() (streamparse.TicklessBatchingBolt

method), 31
read_handshake() (streamparse.BatchingBolt method), 29
read_handshake() (streamparse.Bolt method), 26
read_handshake() (streamparse.ReliableSpout method),

23
read_handshake() (streamparse.Spout method), 21
read_handshake() (streamparse.TicklessBatchingBolt

method), 32
read_message() (streamparse.BatchingBolt method), 29
read_message() (streamparse.Bolt method), 26
read_message() (streamparse.ReliableSpout method), 23
read_message() (streamparse.Spout method), 21
read_message() (streamparse.TicklessBatchingBolt

method), 32
read_tuple() (streamparse.BatchingBolt method), 29
read_tuple() (streamparse.Bolt method), 26
read_tuple() (streamparse.TicklessBatchingBolt method),

32
ReliableSpout (class in streamparse), 22
report_metric() (streamparse.BatchingBolt method), 29
report_metric() (streamparse.Bolt method), 26
report_metric() (streamparse.ReliableSpout method), 24
report_metric() (streamparse.Spout method), 21
report_metric() (streamparse.TicklessBatchingBolt

method), 32
run() (streamparse.BatchingBolt method), 29
run() (streamparse.Bolt method), 26
run() (streamparse.ReliableSpout method), 24
run() (streamparse.Spout method), 21
run() (streamparse.TicklessBatchingBolt method), 32

S
send_message() (streamparse.BatchingBolt method), 29
send_message() (streamparse.Bolt method), 27
send_message() (streamparse.ReliableSpout method), 24
send_message() (streamparse.Spout method), 22
send_message() (streamparse.TicklessBatchingBolt

method), 32
ShellBolt (class in streamparse), 35
ShellSpout (class in streamparse), 36
spec() (streamparse.BatchingBolt method), 29
spec() (streamparse.Bolt class method), 27
spec() (streamparse.JavaBolt class method), 34
spec() (streamparse.JavaSpout class method), 35
spec() (streamparse.ReliableSpout method), 24
spec() (streamparse.ShellBolt class method), 35
spec() (streamparse.ShellSpout class method), 36
spec() (streamparse.Spout class method), 22
spec() (streamparse.TicklessBatchingBolt method), 32
Spout (class in streamparse), 19
StormHandler (class in streamparse), 33
Stream (class in streamparse), 34

T
TicklessBatchingBolt (class in streamparse), 30
Topology (class in streamparse), 33
Tuple (class in streamparse), 19

46 Index

	Quickstart
	Topologies
	API
	Developing Streamparse
	Frequently Asked Questions (FAQ)
	Indices and tables

