
streamparse Documentation
Release 2.1.3

Parsely

October 20, 2015

Contents

1 Quickstart 3
1.1 Dependencies . 3
1.2 Your First Project . 3
1.3 Project Structure . 4
1.4 Defining Topologies . 4
1.5 Spouts and Bolts . 7
1.6 Remote Deployment . 9

2 Topologies 13
2.1 Clojure Quick Reference Guide . 13
2.2 Topology Files . 13
2.3 Shell Spouts and Bolts . 14
2.4 Python Spouts and Bolts . 15
2.5 Running Topologies . 17
2.6 Parallelism and Workers . 17

3 API 19
3.1 Tuples . 19
3.2 Components . 19

4 Developing Streamparse 31
4.1 Lein . 31
4.2 Using Local Clojure Interop Library . 31
4.3 Local pip installation . 31
4.4 Installing Storm pre-releases . 31

5 Frequently Asked Questions (FAQ) 33
5.1 General Questions . 33
5.2 Errors While Running streamparse . 34

6 Indices and tables 37

i

ii

streamparse Documentation, Release 2.1.3

streamparse lets you run Python code against real-time streams of data. Integrates with Apache Storm.

Contents 1

streamparse Documentation, Release 2.1.3

2 Contents

CHAPTER 1

Quickstart

1.1 Dependencies

1.1.1 Java and Clojure

To run local and remote computation clusters, streamparse relies upon a JVM technology called Apache Storm. The
integration with this technology is lightweight, and for the most part, you don’t need to think about it.

However, to get the library running, you’ll need

1. JDK 7+, which you can install with apt-get, homebrew, or an installler; and

2. lein, which you can install from the project’s page or github

Confirm that you have lein installed by running:

> lein version

You should get output similar to this:

Leiningen 2.3.4 on Java 1.7.0_55 Java HotSpot(TM) 64-Bit Server VM

If lein isn’t installed, follow these directions.

Once that’s all set, you install streamparse using pip:

> pip install streamparse

1.2 Your First Project

When working with streamparse, your first step is to create a project using the command-line tool, sparse:

> sparse quickstart wordcount

Creating your wordcount streamparse project...
create wordcount
create wordcount/.gitignore
create wordcount/config.json
create wordcount/fabfile.py
create wordcount/project.clj
create wordcount/README.md
create wordcount/src

3

http://leiningen.org/
https://github.com/technomancy/leiningen#leiningen
http://leiningen.org/#install

streamparse Documentation, Release 2.1.3

create wordcount/src/bolts/
create wordcount/src/bolts/__init__.py
create wordcount/src/bolts/wordcount.py
create wordcount/src/spouts/
create wordcount/src/spouts/__init__.py
create wordcount/src/spouts/words.py
create wordcount/tasks.py
create wordcount/topologies
create wordcount/topologies/wordcount.clj
create wordcount/virtualenvs
create wordcount/virtualenvs/wordcount.txt

Done.

Try running your topology locally with:

cd wordcount
sparse run

The quickstart project provides a basic wordcount topology example which you can examine and modify. You can
inspect the other commands that sparse provides by running:

> sparse -h

1.3 Project Structure

streamparse projects expect to have the following directory layout:

File/Folder Contents
config.json Configuration information for all of your topologies.
fabfile.py Optional custom fabric tasks.
project.clj leiningen project file, can be used to add external JVM dependencies.
src/ Python source files (bolts/spouts/etc.) for topologies.
tasks.py Optional custom invoke tasks.
topologies/ Contains topology definitions written using the Clojure DSL for Storm.
virtualenvs/ Contains pip requirements files in order to install dependencies on remote Storm servers.

1.4 Defining Topologies

Storm’s services are Thrift-based and although it is possible to define a topology in pure Python using Thrift, it
introduces a host of additional dependencies which are less than trivial to setup for local development. In addition, it
turns out that using Clojure to define topologies, still feels fairly Pythonic, so the authors of streamparse decided this
was a good compromise.

Let’s have a look at the definition file created by using the sparse quickstart command.

(ns wordcount
(:use [streamparse.specs])
(:gen-class))

(defn wordcount [options]
[
;; spout configuration
{"word-spout" (python-spout-spec

options

4 Chapter 1. Quickstart

http://storm.apache.org/documentation/Clojure-DSL.html

streamparse Documentation, Release 2.1.3

"spouts.words.WordSpout"
["word"]
)

}
;; bolt configuration
{"count-bolt" (python-bolt-spec

options
{"word-spout" :shuffle}
"bolts.wordcount.WordCounter"
["word" "count"]
:p 2
)

}
]

)

The first block of code we encounter effectively states “import the Clojure DSL functions for Storm”:

(ns wordcount
(:use [backtype.storm.clojure])
(:gen-class))

The next block of code actually defines the topology and stores it into a function named “wordcount”.

(defn wordcount [options]
[
;; spout configuration
{"word-spout" (python-spout-spec

options
"spouts.words.WordSpout"
["word"]
)

}
;; bolt configuration
{"count-bolt" (python-bolt-spec

options
{"word-spout" :shuffle}
"bolts.wordcount.WordCounter"
["word" "count"]
:p 2
)

}
]

)

It turns out, the name of the function doesn’t matter much; we’ve used wordcount above, but it could just as easily
be bananas. What is important, is that the function must return an array with only two dictionaries and take
one argument.

The first dictionary holds a named mapping of all the spouts that exist in the topology, the second holds a named
mapping of all the bolts. The options argument contains a mapping of topology settings.

An additional benefit of defining topologies in Clojure is that we’re able to mix and match the types of spouts and
bolts. In most cases, you may want to use a pure Python topology, but you could easily use JVM-based spouts and
bolts or even spouts and bolts written in other languages like Ruby, Go, etc.

Since you’ll most often define spouts and bolts in Python however, we’ll look at two important functions provided by
streamparse: python-spout-spec and python-bolt-spec.

When creating a Python-based spout, we provide a name for the spout and a definition of that spout via

1.4. Defining Topologies 5

streamparse Documentation, Release 2.1.3

python-spout-spec:

{"sentence-spout-1" (python-spout-spec
;; topology options passed in
options
;; name of the python class to ``run``
"spouts.SentenceSpout"
;; output specification, what named fields will this spout emit?
["sentence"]
;; configuration parameters, can specify multiple
:p 2)

"sentence-spout-2" (shell-spout-spec
options
"spouts.OtherSentenceSpout"
["sentence"])}

In the example above, we’ve defined two spouts in our topology: sentence-spout-1 and sentence-spout-2
and told Storm to run these components. python-spout-spec will use the options mapping to get the path
to the python executable that Storm will use and streamparse will run the class provided. We’ve also let Storm know
exactly what these spouts will be emitting, namely a single field called sentence.

You’ll notice that in sentence-spout-1, we’ve passed an optional map of configuration parameters :p 2, which
sets the spout to have 2 Python processes. This is discussed in Parallelism and Workers.

Creating bolts is very similar and uses the python-bolt-spec function:

{"sentence-splitter" (python-bolt-spec
;; topology options passed in
options
;; inputs, where does this bolt recieve it's tuples from?
{"sentence-spout-1" :shuffle
"sentence-spout-2" :shuffle}

;; class to run
"bolts.SentenceSplitter"
;; output spec, what tuples does this bolt emit?
["word"]
;; configuration parameters
:p 2)

"word-counter" (python-bolt-spec
options
;; recieves tuples from "sentence-splitter", grouped by word
{"sentence-splitter" ["word"]}
"bolts.WordCounter"
["word" "count"])

"word-count-saver" (python-bolt-spec
;; topology options passed in
options
{"word-counter" :shuffle}
"bolts.WordSaver"
;; does not emit any fields
[])}

In the example above, we define 3 bolts by name sentence-splitter, word-counter and
word-count-saver. Since bolts are generally supposed to process some input and optionally produce some
output, we have to tell Storm where a bolts inputs come from and whether or not we’d like Storm to use any stream
grouping on the tuples from the input source.

In the sentence-splitter bolt, you’ll notice that we define two input sources for the bolt. It’s completely fine
to add multiple sources to any bolts.

6 Chapter 1. Quickstart

streamparse Documentation, Release 2.1.3

In the word-counter bolt, we’ve told Storm that we’d like the stream of input tuples to be grouped by the named
field word. Storm offers comprehensive options for stream groupings, but you will most commonly use a shuffle or
fields grouping:

• Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks in a way such that each bolt is guar-
anteed to get an equal number of tuples.

• Fields grouping: The stream is partitioned by the fields specified in the grouping. For example, if the stream is
grouped by the “user-id” field, tuples with the same “user-id” will always go to the same task, but tuples with
different “user-id”’s may go to different tasks.

There are more options to configure with spouts and bolts, we’d encourage you to refer to Storm’s Concepts for more
information.

1.5 Spouts and Bolts

The general flow for creating new spouts and bolts using streamparse is to add them to your src folder and update
the corresponding topology definition.

Let’s create a spout that emits sentences until the end of time:

import itertools

from streamparse.spout import Spout

class SentenceSpout(Spout):

def initialize(self, stormconf, context):
self.sentences = [

"She advised him to take a long holiday, so he immediately quit work and took a trip around the world",
"I was very glad to get a present from her",
"He will be here in half an hour",
"She saw him eating a sandwich",

]
self.sentences = itertools.cycle(self.sentences)

def next_tuple(self):
sentence = next(self.sentences)
self.emit([sentence])

def ack(self, tup_id):
pass # if a tuple is processed properly, do nothing

def fail(self, tup_id):
pass # if a tuple fails to process, do nothing

The magic in the code above happens in the initialize() and next_tuple() functions. Once the spout enters
the main run loop, streamparse will call your spout’s initialize() method. After initialization is complete,
streamparse will continually call the spout’s next_tuple() method where you’re expected to emit tuples that
match whatever you’ve defined in your topology definition.

Now let’s create a bolt that takes in sentences, and spits out words:

import re

from streamparse.bolt import Bolt

1.5. Spouts and Bolts 7

http://storm.apache.org/documentation/Concepts.html#stream-groupings
http://storm.apache.org/documentation/Concepts.html

streamparse Documentation, Release 2.1.3

class SentenceSplitterBolt(Bolt):

def process(self, tup):
sentence = tup.values[0] # extract the sentence
sentence = re.sub(r"[,.;!\?]", "", sentence) # get rid of punctuation
words = [[word.strip()] for word in sentence.split(" ") if word.strip()]
if not words:

no words to process in the sentence, fail the tuple
self.fail(tup)
return

self.emit_many(words)
tuple acknowledgement is handled automatically

The bolt implementation is even simpler. We simply override the default process() method which streamparse
calls when a tuple has been emitted by an incoming spout or bolt. You are welcome to do whatever processing you
would like in this method and can further emit tuples or not depending on the purpose of your bolt.

In the SentenceSplitterBolt above, we have decided to use the emit_many() method instead of emit()
which is a bit more efficient when sending a larger number of tuples to Storm.

If your process() method completes without raising an Exception, streamparse will automatically ensure any emits
you have are anchored to the current tuple being processed and acknowledged after process() completes.

If an Exception is raised while process() is called, streamparse automatically fails the current tuple prior to killing
the Python process.

1.5.1 Failed Tuples

In the example above, we added the ability to fail a sentence tuple if it did not provide any words. What happens
when we fail a tuple? Storm will send a “fail” message back to the spout where the tuple originated from (in this case
SentenceSpout) and streamparse calls the spout’s fail() method. It’s then up to your spout implementation to
decide what to do. A spout could retry a failed tuple, send an error message, or kill the topology. See Dealing With
Errors for more discussion.

1.5.2 Bolt Configuration Options

You can disable the automatic acknowleding, anchoring or failing of tuples by adding class variables set to false for:
auto_ack, auto_anchor or auto_fail. All three options are documented in streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

auto_ack = False
auto_fail = False

def process(self, tup):
do stuff...
if error:
self.fail(tup) # perform failure manually

self.ack(tup) # perform acknowledgement manually

8 Chapter 1. Quickstart

streamparse Documentation, Release 2.1.3

1.5.3 Handling Tick Tuples

Ticks tuples are built into Storm to provide some simple forms of cron-like behaviour without actually having to use
cron. You can receive and react to tick tuples as timer events with your python bolts using streamparse too.

The first step is to override process_tick() in your custom Bolt class. Once this is overridden, you can set the
storm option topology.tick.tuple.freq.secs=<frequency> to cause a tick tuple to be emitted every
<frequency> seconds.

You can see the full docs for process_tick() in streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

def process_tick(self, freq):
An action we want to perform at some regular interval...
self.flush_old_state()

Then, for example, to cause process_tick() to be called every 2 seconds on all of your bolts that override it,
you can launch your topology under sparse run by setting the appropriate -o option and value as in the following
example:

$ sparse run -o "topology.tick.tuple.freq.secs=2" ...

1.6 Remote Deployment

1.6.1 Setting up a Storm Cluster

See Storm’s Setting up a Storm Cluster.

1.6.2 Submit

When you are satisfied that your topology works well via testing with:

> sparse run -d

You can submit your topology to a remote Storm cluster using the command:

sparse submit [--environment <env>] [--name <topology>] [-dv]

Before submitting, you have to have at least one environment configured in your project’s config.json file. Let’s
create a sample environment called “prod” in our config.json file:

{
"library": "",
"topology_specs": "topologies/",
"virtualenv_specs": "virtualenvs/",
"envs": {

"prod": {
"user": "storm",
"nimbus": "storm1.my-cluster.com",
"workers": [

"storm1.my-cluster.com",

1.6. Remote Deployment 9

https://storm.apache.org/documentation/Setting-up-a-Storm-cluster.html

streamparse Documentation, Release 2.1.3

"storm2.my-cluster.com",
"storm3.my-cluster.com"

],
"log": {

"path": "/var/log/storm/streamparse",
"max_bytes": 100000,
"backup_count": 10,
"level": "info"

},
"use_ssh_for_nimbus": true,
"virtualenv_root": "/data/virtualenvs/"

}
}

}

We’ve now defined a prod environment that will use the user storm when deploying topologies. Before submitting
the topology though, streamparse will automatically take care of instaling all the dependencies your topology requires.
It does this by sshing into everyone of the nodes in the workers config variable and building a virtualenv using the
the project’s local virtualenvs/<topology_name>.txt requirements file.

This implies a few requirements about the user you specify per environment:

1. Must have ssh access to all servers in your Storm cluster

2. Must have write access to the virtualenv_root on all servers in your Storm cluster

streamparse also assumes that virtualenv is installed on all Storm servers.

Once an environment is configured, we could deploy our wordcount topology like so:

> sparse submit

Seeing as we have only one topology and environment, we don’t need to specify these explicitly. streamparse will
now:

1. Package up a JAR containing all your Python source files

2. Build a virtualenv on all your Storm workers (in parallel)

3. Submit the topology to the nimbus server

1.6.3 Disabling & Configuring Virtualenv Creation

If you do not have ssh access to all of the servers in your Storm cluster, but you know they have all of the requirements
for your Python code installed, you can set "use_virtualenv" to false in config.json.

If you would like to pass command-line flags to virtualenv, you can set "virtualenv_flags" in config.json,
for example:

"virtualenv_flags": "-p /path/to/python"

Note that this only applies when the virtualenv is created, not when an existing virtualenv is used.

1.6.4 Using unofficial versions of Storm

If you wish to use streamparse with unofficial versions of storm (such as the HDP Storm) you should set
:repositories in your project.clj to point to the Maven repository containing the JAR you want to use,
and set the version in :dependencies to match the desired version of Storm.

10 Chapter 1. Quickstart

streamparse Documentation, Release 2.1.3

For example, to use the version supplied by HDP, you would set :repositories to:

:repositories {"HDP Releases" "http://repo.hortonworks.com/content/repositories/releases"}

1.6.5 Local Clusters

Streamparse assumes that your Storm cluster is not on your local machine. If it is, such as the case with VMs or
Docker images, change "use_ssh_for_nimbus" in config.json to false.

1.6.6 Logging

The Storm supervisor needs to have access to the log.path directory for logging to work (in the example above,
/var/log/storm/streamparse). If you have properly configured the log.path option in your config,
streamparse will automatically set up a log files on each Storm worker in this path using the following filename
convention:

streamparse_<topology_name>_<component_name>_<task_id>_<process_id>.log

Where:

• topology_name: is the topology.name variable set in Storm

• component_name: is the name of the currently executing component as defined in your topology definition
file (.clj file)

• task_id: is the task ID running this component in the topology

• process_id: is the process ID of the Python process

streamparse uses Python’s logging.handlers.RotatingFileHandler and by default will only save 10 1
MB log files (10 MB in total), but this can be tuned with the log.max_bytes and log.backup_count variables.

The default logging level is set to INFO, but if you can tune this with the log.level setting which can be one
of critical, error, warning, info or debug. Note that if you perform sparse run or sparse submit with the
--debug set, this will override your log.level setting and set the log level to debug.

When running your topology locally via sparse run, your log path will be automatically set to
/path/to/your/streamparse/project/logs.

1.6. Remote Deployment 11

streamparse Documentation, Release 2.1.3

12 Chapter 1. Quickstart

CHAPTER 2

Topologies

2.1 Clojure Quick Reference Guide

Topologies in streamparse are defined using Clojure. Here is a quick overview so you don’t get lost.

Function definitions (defn fn-name [options] expressions) defines a function called fn-name that
takes options as an argument and evaluates each of the expressions, treating the last evaluated expression
as the return value for a function.

Keyword arguments In Clojure, keyword arguments are specified using paired-up positional arguments. Thus :p 2
is the p keyword set to value 2.

List [val1 val2 ... valN] defines a list of N values.

Map {"key-1" val1 "key-2" val2 ... "key-N" valN} is a mapping of key-value pairs.

Comments Anything after ;; is a line comment.

For Python programmers, Clojure can be a little tricky in that whitespace is not significant, and , is treated as whites-
pace. This means [val1 val2] and [val1, val2] are identical lists. Function definitions can similarly take up
multiple lines.

(defn fn-name [options]
expression1
expression2
;; ...
expressionN
;; the value of expressionN is the returned value

)

2.2 Topology Files

A topology file describes your topology in terms of Directed Acyclic Graph (DAC) of Storm components, namely
bolts and spouts. It uses the Clojure DSL for this, along with some utility functions streamparse provides.

Topology files are located in topologies in your streamparse project folder. There can be any number of topology
files for your project in this directory.

• topologies/my-topology.clj

• topologies/my-other-topology.clj

• topologies/my-third-topology.clj

13

http://storm.apache.org/documentation/Clojure-DSL.html

streamparse Documentation, Release 2.1.3

So on and so forth.

A sample my-topology.clj, would start off importing the streamparse Clojure DSL functions.

(ns my-topology
(:use [streamparse.specs])
(:gen-class))

Notice the my-topologymatches the name of the file. The next line is the import of the streamparse utility functions.

You could optionally avoid all of the streamparse-provided helper functions and import your own functions or the
Clojure DSL for Storm directly.

(ns my-topology
(:use [backtype.storm.clojure])
(:gen-class))

In the next part of the file, we setup a topology definition, also named my-topology (matching the ns line and
filename). This definition is actually a Clojure function that takes the topology options as a single map argument. This
function returns a list of 2 maps – a spout map, and a bolt map. These two maps define the DAG that is your topology.

(defn my-topology [options]
[
;; spout configuration
{"my-python-spout" (python-spout-spec

;; topology options passed in
options
;; python class to run
"spouts.myspout.MySpout"
;; output specification, what named fields will this spout emit?
["data"]
;; configuration parameters, can specify multiple or none at all
)

}

;; bolt configuration
{"my-python-bolt" (python-bolt-spec

;; topology options pased in
options
;; inputs, where does this bolt receive its tuples from?
{"my-python-spout" :shuffle}
;; python class to run
"bolts.mybolt.MyBolt"
;; output specification, what named fields will this spout emit?
["data" "date"]
;; configuration parameters, can specify multiple or none at all
:p 2
)

}
]

)

2.3 Shell Spouts and Bolts

The Clojure DSL provides the shell-bolt-spec and shell-spout-spec functions to handle bolts in non-
JVM languages.

14 Chapter 2. Topologies

http://storm.apache.org/documentation/Clojure-DSL.html

streamparse Documentation, Release 2.1.3

The shell-spout-spec takes at least 2 arguments:

1. The command line program to run (as a list of arguments)

2. A list of the named fields the spout will output

3. Any optional keyword arguments

"my-shell-spout" (shell-spout-spec
;; Command to run
["python" "spout.py"]
;; output specification, what named fields will this spout emit?
["data"]
;; configuration parameters, can specify multiple or none at all
:p 2

)

The shell-bolt-spec takes at least 3 arguments:

1. A map of the input spouts and their groupings

2. The command line program to run (as a list of arguments)

3. A list of the named fields the spout will output

4. Any optional keyword arguments

"my-shell-bolt" (shell-bolt-spec
;; input spouts and their groupings
{"my-shell-spout" :shuffle}
;; Command to run
["bash" "mybolt.sh"]
;; output specification, what named fields will this spout emit?
["data"]
;; configuration parameters, can specify multiple or none at all
:p 2

)

2.4 Python Spouts and Bolts

The example topology above, and the sparse quickstart wordcount project utilizes the
python-spout-spec and python-bolt-spec provided by the streamparse.specs import state-
ment.

(python-spout-spec ...) and (python-bolt-spec ...) are just convenience functions provided by
streamparse for creating topology components. They are simply wrappers around (shell-spout-spec ...)
and (shell-bolt-spec ...).

The python-spout-spec takes at least 3 arguments:

1. options - the topology options array passed in

2. The full path to the class to run. spouts.myspout.MySpout is actually the MySpout class in
src/spouts/myspout.py

3. A list of the named fields the spout will output

4. Any optional keyword arguments, such as parallelism :p 2

The python-bolt-spec takes at least 4 arguments:

1. options - the topology options array passed in

2.4. Python Spouts and Bolts 15

streamparse Documentation, Release 2.1.3

2. A map of the input spouts and their groupings (See below)

3. The full path to the class to run. bolts.mybolt.MyBolt is actually the MyBolt class in
src/bolts/mybolt.py

4. A list of the named fields the spout will output

5. Any optional keyword arguments, such as parallelism :p 2

Parallelism is further discussed in Parallelism and Workers.

2.4.1 Groupings

Storm offers comprehensive options for stream groupings, but you will most commonly use a shuffle or fields group-
ing:

• Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks in a way such that each bolt is guar-
anteed to get an equal number of tuples.

• Fields grouping: The stream is partitioned by the fields specified in the grouping. For example, if the stream is
grouped by the “user-id” field, tuples with the same “user-id” will always go to the same task, but tuples with
different “user-id”’s may go to different tasks.

2.4.2 Streams

Topologies support multiple streams when routing tuples between components. The emit()method takes an optional
stream argument to specify the stream ID. For example:

self.emit([term, timestamp, lookup_result], stream='index')
self.emit([term, timestamp, lookup_result], stream='topic')

The topology definition can include these stream IDs to route between components, and a component can specify more
than one stream. Example with the Clojure DSL:

"lookup-bolt" (python-bolt-spec
options
{"search-bolt" :shuffle}
"birding.bolt.TwitterLookupBolt"
{"index" ["url" "timestamp" "search_result"]
"topic" ["url" "timestamp" "search_result"]}

:p 2
)

"elasticsearch-index-bolt" (python-bolt-spec
options
{["lookup-bolt" "index"] ["url" "timestamp" "search_result"]}
"birding.bolt.ElasticsearchIndexBolt"
[]
:p 1
)

"result-topic-bolt" (python-bolt-spec
options
{["lookup-bolt" "index"] ["url" "timestamp" "search_result"]
["lookup-bolt" "topic"] ["url" "timestamp" "search_result"]}

"birding.bolt.ResultTopicBolt"
[]
:p 1
)

16 Chapter 2. Topologies

http://storm.apache.org/documentation/Concepts.html#stream-groupings
http://storm.apache.org/documentation/Clojure-DSL.html

streamparse Documentation, Release 2.1.3

Storm sets a default stream ID of "default", as described in its doc on Streams:

Every stream is given an id when declared. Since single-stream spouts and bolts are so common, ... the
stream is given the default id of “default”.

2.5 Running Topologies

2.5.1 What Streamparse Does

When you run a topology either locally or by submitting to a cluster, streamparse will

1. Compile your .clj topology file

2. Execute the Clojure code by invoking your topology function, passing it the options map

3. Get the DAG defined by the topology and pass it into the Storm Java interop classes like StormSubmitter and
LocalCluster

4. Run/submit your topology

If you invoked streamparse with sparse run, your code is executed directly from the src/ directory.

If you submitted to a cluster with sparse submit, streamparse uses lein to compile the src directory into a jar
file, which is run on the cluster. Lein uses the project.clj file located in the root of your project. This file is a
standard lein project file and can be customized according to your needs.

2.5.2 Dealing With Errors

When detecting an error, bolt code can call its fail() method in order to have Storm call the respective spout’s
fail() method. Known error/failure cases result in explicit callbacks to the spout using this approach.

Exceptions which propagate without being caught will cause the component to crash. On sparse run, the entire
topology will stop execution. On a running cluster (i.e. sparse submit), Storm will auto-restart the crashed
component and the spout will receive a fail() call.

If the spout’s fail handling logic is to hold back the tuple and not re-emit it, then things will keep going. If it re-emits it,
then it may crash that component again. Whether the topology is tolerant of the failure depends on how you implement
failure handling in your spout.

Common approaches are to:

• Append errant tuples to some sort of error log or queue for manual inspection later, while letting processing
continue otherwise.

• Attempt 1 or 2 retries before considering the tuple a failure, if the error was likely an transient problem.

• Ignore the failed tuple, if appropriate to the application.

2.6 Parallelism and Workers

In general, use the :p “parallelism hint” parameter per spout and bolt in your configuration to control the
number of Python processes per component.

Reference: Understanding the Parallelism of a Storm Topology

Storm parallelism entities:

2.5. Running Topologies 17

http://storm.apache.org/documentation/Concepts.html#streams
https://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html

streamparse Documentation, Release 2.1.3

• A worker process is a JVM, i.e. a Java process.

• An executor is a thread that is spawned by a worker process.

• A task performs the actual data processing. (To simplify, you can think of it as a Python callable.)

Spout and bolt specs take a :p keyword to provide a parallelism hint to Storm for the number of executors (threads)
to use for the given spout/bolt; for example, :p 2 is a hint to use two executors. Because streamparse implements
spouts and bolts as independent Python processes, setting :p N results in N Python processes for the given spout/bolt.

Many streamparse applications will need only to set this parallelism hint to control the number of resulting Python
processes when tuning streamparse configuration. For the underlying topology workers, streamparse sets a default of
2 workers, which are independent JVM processes for Storm. This allows a topology to continue running when one
worker process dies; the other is around until the dead process restarts.

Both sparse run and sparse sumbit accept a -p N command-line flag to set the number of topology workers
to N. For convenience, this flag also sets the number of Storm’s underlying messaging reliability acker bolts to the
same N value. In the event that you need it (and you understand Storm ackers), use the -a and -w command-line flags
instead of -p to control the number of acker bolts and the number of workers, respectively. The sparse command
does not support Storm’s rebalancing features; use sparse submit -f -p N to kill the running topology and
redeploy it with N workers.

Note that Storm’s underlying thread implementation, LMAX Disruptor, is designed with high-performance inter-
thread messaging as a goal. Rule out Python-level issues when tuning your topology:

• bottlenecks where the number of spout and bolt processes are out of balance

• serialization/deserialization overhead of more data emitted than you need

• slow routines/callables in your code

18 Chapter 2. Topologies

https://storm.apache.org/documentation/Guaranteeing-message-processing.html
https://storm.apache.org/2012/08/02/storm080-released.html
http://lmax-exchange.github.io/disruptor/

CHAPTER 3

API

3.1 Tuples

class streamparse.storm.component.Tuple(id, component, stream, task, values)
Storm’s primitive data type passed around via streams.

Variables

• id – the ID of the Tuple.

• component – component that the Tuple was generated from.

• stream – the stream that the Tuple was emitted into.

• task – the task the Tuple was generated from.

• values – the payload of the Tuple where data is stored.

You should never have to instantiate an instance of a streamparse.storm.component.Tuple yourself as
streamparse handles this for you prior to, for example, a streamparse.storm.bolt.Bolt‘s process()
method being called.

None of the emit methods for bolts or spouts require that you pass a streamparse.storm.component.Tuple
instance.

3.2 Components

Both streamparse.storm.bolt.Bolt and streamparse.storm.spout.Spout inherit from a common
base-class, streamparse.storm.component.Component. It handles the basic Multi-Lang IPC between
Storm and Python.

class streamparse.storm.component.Component(input_stream=<open file ‘<stdin>’, mode ‘r’>,
output_stream=<open file ‘<stdout>’, mode
‘w’>, rdb_signal=10)

Base class for spouts and bolts which contains class methods for logging messages back to the Storm worker
process.

Variables

• input_stream – The file-like object to use to retrieve commands from Storm. De-
faults to sys.stdin.

• output_stream – The file-like object to send messages to Storm with. Defaults to
sys.stdout.

19

http://docs.python.org/library/functions.html#id
https://storm.apache.org/documentation/Multilang-protocol.html
https://storm.apache.org/documentation/Multilang-protocol.html

streamparse Documentation, Release 2.1.3

• topology_name – The name of the topology sent by Storm in the initial handshake.

• task_id – The numerical task ID for this component, as sent by Storm in the initial hand-
shake.

• component_name – The name of this component, as sent by Storm in the initial hand-
shake.

• debug – A bool indicating whether or not Storm is running in debug mode. Specified by
the topology.debug Storm setting.

• storm_conf – A dict containing the configuration values sent by Storm in the initial
handshake with this component.

• context – The context of where this component is in the topology. See the Storm Multi-
Lang protocol documentation for details.

• pid – An int indicating the process ID of this component as retrieved by os.getpid().

• logger – A logger to use with this component.

Note: Using Component.logger combined with the
streamparse.storm.component.StormHandler handler is the rec-
ommended way for logging messages from your component. If you use
Component.log instead, the logging messages will always be sent to Storm,
even if they are debug level messages and you are running in production. Using
streamparse.storm.component.StormHandler ensures that you will instead
have your logging messages filtered on the Python side and only have the messages you
actually want logged serialized and sent to Storm.

emit(tup, tup_id=None, stream=None, anchors=None, direct_task=None, need_task_ids=True)
Emit a new Tuple to a stream.

Parameters

• tup (list or streamparse.storm.component.Tuple) – the Tuple payload to
send to Storm, should contain only JSON-serializable data.

• tup_id (str) – the ID for the Tuple. If omitted by a
streamparse.storm.spout.Spout, this emit will be unreliable.

• stream (str) – the ID of the stream to emit this Tuple to. Specify None to emit to default
stream.

• anchors (list) – IDs the Tuples (or streamparse.storm.component.Tuple
instances) which the emitted Tuples should be anchored to. This is only passed by
streamparse.storm.bolt.Bolt.

• direct_task (int) – the task to send the Tuple to.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple was
emitted (default: True).

Returns a list of task IDs that the Tuple was sent to. Note that when specifying direct_task,
this will be equal to [direct_task]. If you specify need_task_ids=False, this
function will return None.

static is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

20 Chapter 3. API

https://storm.apache.org/documentation/Multilang-protocol.html
https://storm.apache.org/documentation/Multilang-protocol.html
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

streamparse Documentation, Release 2.1.3

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using Component.logger with a
streamparse.storm.component.StormHandler, because the filtering will happen on the
Python side (instead of on the Java side after taking the time to serialize your message and send it to
Storm).

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm, reconstruct newlines appropriately.

All of Storm’s messages (for either bolts or spouts) should be of the form:

'<command or task_id form prior emit>\nend\n'

Command example, an incoming Tuple to a bolt:

'{ "id": "-6955786537413359385", "comp": "1", "stream": "1", "task": 9, "tuple": ["snow white and the seven dwarfs", "field2", 3]}\nend\n'

Command example for a spout to emit its next Tuple:

'{"command": "next"}\nend\n'

Example, the task IDs a prior emit was sent to:

'[12, 22, 24]\nend\n'

The edge case of where we read ’’ from input_stream indicating EOF, usually means that commu-
nication with the supervisor has been severed.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

3.2. Components 21

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

streamparse Documentation, Release 2.1.3

3.2.1 Spouts

Spouts are data sources for topologies, they can read from any data source and emit tuples into streams.

class streamparse.storm.spout.Spout(input_stream=<open file ‘<stdin>’, mode ‘r’>, out-
put_stream=<open file ‘<stdout>’, mode ‘w’>,
rdb_signal=10)

Bases: streamparse.storm.component.Component

Base class for all streamparse spouts.

For more information on spouts, consult Storm’s Concepts documentation.

ack(tup_id)
Called when a bolt acknowledges a Tuple in the topology.

Parameters tup_id (str) – the ID of the Tuple that has been fully acknowledged in the topol-
ogy.

emit(tup, tup_id=None, stream=None, direct_task=None, need_task_ids=True)
Emit a spout Tuple message.

Parameters

• tup (list or tuple) – the Tuple to send to Storm, should contain only JSON-serializable
data.

• tup_id (str) – the ID for the Tuple. Leave this blank for an unreliable emit.

• stream (str) – ID of the stream this Tuple should be emitted to. Leave empty to emit to
the default stream.

• direct_task (int) – the task to send the Tuple to if performing a direct emit.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple was
emitted (default: True).

Returns a list of task IDs that the Tuple was sent to. Note that when specifying direct_task,
this will be equal to [direct_task]. If you specify need_task_ids=False, this
function will return None.

emit_many(tuples, stream=None, tup_ids=None, direct_task=None, need_task_ids=True)
Emit multiple tuples.

Parameters

• tuples (list) – a list of multiple Tuple payloads to send to Storm. All Tuples should
contain only JSON-serializable data.

• stream (str) – the ID of the stream to emit these Tuples to. Specify None to emit to
default stream.

• tup_ids (list) – the ID for the Tuple. Leave this blank for an unreliable emit.

• tup_ids – IDs for each of the Tuples in the list. Omit these for an unreliable emit.

• direct_task (int) – indicates the task to send the Tuple to.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple was
emitted (default: True).

Deprecated since version 2.0.0: Just call Spout.emit() repeatedly instead.

fail(tup_id)
Called when a Tuple fails in the topology

22 Chapter 3. API

http://storm.apache.org/documentation/Concepts.html
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

streamparse Documentation, Release 2.1.3

A spout can choose to emit the Tuple again or ignore the fail. The default is to ignore.

Parameters tup_id (str) – the ID of the Tuple that has failed in the topology either due to a
bolt calling fail() or a Tuple timing out.

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this spout. This is the configuration
provided to the topology, merged in with cluster configuration on the worker node.

• context (dict) – information about the component’s place within the topology such as:
task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using Component.logger with a
streamparse.storm.component.StormHandler, because the filtering will happen on the
Python side (instead of on the Java side after taking the time to serialize your message and send it to
Storm).

next_tuple()
Implement this function to emit Tuples as necessary.

This function should not block, or Storm will think the spout is dead. Instead, let it return and streamparse
will send a noop to storm, which lets it know the spout is functioning.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm, reconstruct newlines appropriately.

All of Storm’s messages (for either bolts or spouts) should be of the form:

'<command or task_id form prior emit>\nend\n'

Command example, an incoming Tuple to a bolt:

3.2. Components 23

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

streamparse Documentation, Release 2.1.3

'{ "id": "-6955786537413359385", "comp": "1", "stream": "1", "task": 9, "tuple": ["snow white and the seven dwarfs", "field2", 3]}\nend\n'

Command example for a spout to emit its next Tuple:

'{"command": "next"}\nend\n'

Example, the task IDs a prior emit was sent to:

'[12, 22, 24]\nend\n'

The edge case of where we read ’’ from input_stream indicating EOF, usually means that commu-
nication with the supervisor has been severed.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

3.2.2 Bolts

class streamparse.storm.bolt.Bolt(input_stream=<open file ‘<stdin>’, mode ‘r’>, out-
put_stream=<open file ‘<stdout>’, mode ‘w’>,
rdb_signal=10)

Bases: streamparse.storm.component.Component

The base class for all streamparse bolts.

For more information on bolts, consult Storm’s Concepts documentation.

Variables

• auto_anchor – A bool indicating whether or not the bolt should automatically anchor
emits to the incoming Tuple ID. Tuple anchoring is how Storm provides reliability, you can
read more about Tuple anchoring in Storm’s docs. Default is True.

• auto_ack – A bool indicating whether or not the bolt should automatically acknowledge
Tuples after process() is called. Default is True.

• auto_fail – A bool indicating whether or not the bolt should automatically fail Tuples
when an exception occurs when the process() method is called. Default is True.

Example:

from streamparse.bolt import Bolt

class SentenceSplitterBolt(Bolt):

def process(self, tup):
sentence = tup.values[0]
for word in sentence.split(" "):

self.emit([word])

ack(tup)
Indicate that processing of a Tuple has succeeded.

24 Chapter 3. API

http://storm.apache.org/documentation/Concepts.html
https://storm.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api

streamparse Documentation, Release 2.1.3

Parameters tup (str or streamparse.storm.component.Tuple) – the Tuple to ac-
knowledge.

emit(tup, stream=None, anchors=None, direct_task=None, need_task_ids=True)
Emit a new Tuple to a stream.

Parameters

• tup (list or streamparse.storm.component.Tuple) – the Tuple payload to
send to Storm, should contain only JSON-serializable data.

• stream (str) – the ID of the stream to emit this Tuple to. Specify None to emit to default
stream.

• anchors (list) – IDs the Tuples (or streamparse.storm.component.Tuple in-
stances) which the emitted Tuples should be anchored to. If auto_anchor is set to
True and you have not specified anchors, anchors will be set to the incoming/most
recent Tuple ID(s).

• direct_task (int) – the task to send the Tuple to.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple was
emitted (default: True).

Returns a list of task IDs that the Tuple was sent to. Note that when specifying direct_task,
this will be equal to [direct_task]. If you specify need_task_ids=False, this
function will return None.

emit_many(tuples, stream=None, anchors=None, direct_task=None, need_task_ids=True)
Emit multiple Tuples.

Parameters

• tuples (list) – a list of multiple Tuple payloads to send to Storm. All Tuples should
contain only JSON-serializable data.

• stream (str) – the ID of the steram to emit these Tuples to. Specify None to emit to
default stream.

• anchors (list) – IDs the Tuples (or streamparse.storm.component.Tuple in-
stances) which the emitted Tuples should be anchored to. If auto_anchor is set to
True and you have not specified anchors, anchors will be set to the incoming/most
recent Tuple ID(s).

• direct_task (int) – indicates the task to send the Tuple to.

• need_task_ids (bool) – indicate whether or not you’d like the task IDs the Tuple was
emitted (default: True).

Deprecated since version 2.0.0: Just call Bolt.emit() repeatedly instead.

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or streamparse.storm.component.Tuple) – the Tuple to fail
(its id if str).

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

3.2. Components 25

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str

streamparse Documentation, Release 2.1.3

• storm_conf (dict) – the Storm configuration for this bolt. This is the configuration
provided to the topology, merged in with cluster configuration on the worker node.

• context (dict) – information about the component’s place within the topology such as:
task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

static is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using Component.logger with a
streamparse.storm.component.StormHandler, because the filtering will happen on the
Python side (instead of on the Java side after taking the time to serialize your message and send it to
Storm).

process(tup)
Process a single Tuple streamparse.storm.component.Tuple of input

This should be overridden by subclasses. streamparse.storm.component.Tuple objects con-
tain metadata about which component, stream and task it came from. The actual values of the Tuple can
be accessed by calling tup.values.

Parameters tup (streamparse.storm.component.Tuple) – the Tuple to be pro-
cessed.

process_tick(tup)
Process special ‘tick Tuples’ which allow time-based behaviour to be included in bolts.

Default behaviour is to ignore time ticks. This should be overridden by subclasses who wish to react to
timer events via tick Tuples.

Tick Tuples will be sent to all bolts in a toplogy when the storm configuration option ‘topol-
ogy.tick.tuple.freq.secs’ is set to an integer value, the number of seconds.

Parameters tup (streamparse.storm.component.Tuple) – the Tuple to be pro-
cessed.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

26 Chapter 3. API

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

streamparse Documentation, Release 2.1.3

read_message()
Read a message from Storm, reconstruct newlines appropriately.

All of Storm’s messages (for either bolts or spouts) should be of the form:

'<command or task_id form prior emit>\nend\n'

Command example, an incoming Tuple to a bolt:

'{ "id": "-6955786537413359385", "comp": "1", "stream": "1", "task": 9, "tuple": ["snow white and the seven dwarfs", "field2", 3]}\nend\n'

Command example for a spout to emit its next Tuple:

'{"command": "next"}\nend\n'

Example, the task IDs a prior emit was sent to:

'[12, 22, 24]\nend\n'

The edge case of where we read ’’ from input_stream indicating EOF, usually means that commu-
nication with the supervisor has been severed.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

class streamparse.storm.bolt.BatchingBolt(*args, **kwargs)
Bases: streamparse.storm.bolt.Bolt

A bolt which batches Tuples for processing.

Batching Tuples is unexpectedly complex to do correctly. The main problem is that all bolts are single-threaded.
The difficult comes when the topology is shutting down because Storm stops feeding the bolt Tuples. If the bolt
is blocked waiting on stdin, then it can’t process any waiting Tuples, or even ack ones that were asynchronously
written to a data store.

This bolt helps with that by grouping Tuples received between tick Tuples into batches.

To use this class, you must implement process_batch. group_key can be optionally implemented so that
Tuples are grouped before process_batch is even called.

You must also set the topology.tick.tuple.freq.secs to how frequently you would like ticks to be sent. If you want
ticks_between_batches to work the same way secs_between_batchesworked in older versions of
streamparse, just set topology.tick.tuple.freq.secs to 1. This setting can be specified either at the topology level,
or in the topology Clojure file by adding :conf {“topology.tick.tuple.freq.secs”, 1} to your python-bolt-spec.

Variables

• auto_anchor – A bool indicating whether or not the bolt should automatically anchor
emits to the incoming Tuple ID. Tuple anchoring is how Storm provides reliability, you can
read more about Tuple anchoring in Storm’s docs. Default is True.

• auto_ack – A bool indicating whether or not the bolt should automatically acknowledge
Tuples after process_batch() is called. Default is True.

3.2. Components 27

https://storm.apache.org/documentation/Guaranteeing-message-processing.html#what-is-storms-reliability-api

streamparse Documentation, Release 2.1.3

• auto_fail – A bool indicating whether or not the bolt should automatically fail Tuples
when an exception occurs when the process_batch() method is called. Default is
True.

• ticks_between_batches – The number of tick Tuples to wait before processing a
batch.

Example:

from streamparse.bolt import BatchingBolt

class WordCounterBolt(BatchingBolt):

ticks_between_batches = 5

def group_key(self, tup):
word = tup.values[0]
return word # collect batches of words

def process_batch(self, key, tups):
emit the count of words we had per 5s batch
self.emit([key, len(tups)])

ack(tup)
Indicate that processing of a Tuple has succeeded.

Parameters tup (str or streamparse.storm.component.Tuple) – the Tuple to ac-
knowledge.

emit(tup, **kwargs)
Modified emit that will not return task IDs after emitting.

See streamparse.storm.component.Bolt for more information.

Returns None.

emit_many(tups, **kwargs)
Modified emit_many that will not return task IDs after emitting.

See streamparse.storm.component.Bolt for more information.

Returns None.

Deprecated since version 2.0.0: Just call BatchingBolt.emit() repeatedly instead.

fail(tup)
Indicate that processing of a Tuple has failed.

Parameters tup (str or streamparse.storm.component.Tuple) – the Tuple to fail
(its id if str).

group_key(tup)
Return the group key used to group Tuples within a batch.

By default, returns None, which put all Tuples in a single batch, effectively just time-based batching.
Override this to create multiple batches based on a key.

Parameters tup (streamparse.storm.component.Tuple) – the Tuple used to extract
a group key

Returns Any hashable value.

28 Chapter 3. API

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

streamparse Documentation, Release 2.1.3

initialize(storm_conf, context)
Called immediately after the initial handshake with Storm and before the main run loop. A good place to
initialize connections to data sources.

Parameters

• storm_conf (dict) – the Storm configuration for this bolt. This is the configuration
provided to the topology, merged in with cluster configuration on the worker node.

• context (dict) – information about the component’s place within the topology such as:
task IDs, inputs, outputs etc.

is_heartbeat(tup)

Returns Whether or not the given Tuple is a heartbeat

is_tick(tup)

Returns Whether or not the given Tuple is a tick Tuple

log(message, level=None)
Log a message to Storm optionally providing a logging level.

Parameters

• message (str) – the log message to send to Storm.

• level (str) – the logging level that Storm should use when writing the message. Can
be one of: trace, debug, info, warn, or error (default: info).

Warning: This will send your message to Storm regardless of what level you
specify. In almost all cases, you are better of using Component.logger with a
streamparse.storm.component.StormHandler, because the filtering will happen on the
Python side (instead of on the Java side after taking the time to serialize your message and send it to
Storm).

process(tup)
Group non-tick Tuples into batches by group_key.

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

process_batch(key, tups)
Process a batch of Tuples. Should be overridden by subclasses.

Parameters

• key (hashable) – the group key for the list of batches.

• tups (list) – a list of streamparse.storm.component.Tuple s for the group.

process_batches()
Iterate through all batches, call process_batch on them, and ack.

Separated out for the rare instances when we want to subclass BatchingBolt and customize what mecha-
nism causes batches to be processed.

process_tick(tick_tup)
Increment tick counter, and call process_batch for all current batches if tick counter exceeds
ticks_between_batches.

See streamparse.storm.component.Bolt for more information.

3.2. Components 29

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list

streamparse Documentation, Release 2.1.3

Warning: This method should not be overriden. If you want to tweak how Tuples are grouped into
batches, override group_key.

raise_exception(exception, tup=None)
Report an exception back to Storm via logging.

Parameters

• exception – a Python exception.

• tup – a Tuple object.

read_handshake()
Read and process an initial handshake message from Storm.

read_message()
Read a message from Storm, reconstruct newlines appropriately.

All of Storm’s messages (for either bolts or spouts) should be of the form:

'<command or task_id form prior emit>\nend\n'

Command example, an incoming Tuple to a bolt:

'{ "id": "-6955786537413359385", "comp": "1", "stream": "1", "task": 9, "tuple": ["snow white and the seven dwarfs", "field2", 3]}\nend\n'

Command example for a spout to emit its next Tuple:

'{"command": "next"}\nend\n'

Example, the task IDs a prior emit was sent to:

'[12, 22, 24]\nend\n'

The edge case of where we read ’’ from input_stream indicating EOF, usually means that commu-
nication with the supervisor has been severed.

run()
Main run loop for all components.

Performs initial handshake with Storm and reads Tuples handing them off to subclasses. Any exceptions
are caught and logged back to Storm prior to the Python process exiting.

Warning: Subclasses should not override this method.

send_message(message)
Send a message to Storm via stdout.

30 Chapter 3. API

CHAPTER 4

Developing Streamparse

4.1 Lein

Install Leiningen according to the instructions in the quickstart.

4.2 Using Local Clojure Interop Library

You can tell lein to point directly at streamparse’s Clojure repo and use the code there for all of the interop com-
mands, so that you can test changes while developing.

To do this, add a directory called checkouts and symlink it up:

mkdir checkouts
cd checkouts
ln -s ../../../streamparse/jvm streamparse
cd ..

Now, comment out the com.parsely/streamparse dependency in project.clj. It will now pick up the
Clojure commands from your local repo. So, now you can tweak and change them!

4.3 Local pip installation

In your virtualenv for this project, go into ~/repos/streamparse (where you cloned streamparse) and simply
run:

python setup.py develop

This will install a streamparse Python version into the virtualenv which is essentially symlinked to your local version.

NOTE: streamparse currently pip installs streamparse’s released version on remote clusters automatically. Therefore,
though this will work for local development, you’ll need to push streamparse somewhere pip installable (or change
requirements.txt) to make it pick up that version on a remote cluster.

4.4 Installing Storm pre-releases

You can clone Storm from Github here:

31

streamparse Documentation, Release 2.1.3

git clone git@github.com:apache/storm.git

There are tags available for releases, e.g.:

git checkout v0.9.2-incubating

To build a local Storm release, use:

mvn install
cd storm-dist/binary
mvn package

These steps will take awhile as they also run Storm’s internal unit and integration tests.

The first line will actually install Storm locally in your maven (.m2) repository. You can confirm this with:

ls ~/.m2/repository/org/apache/storm/storm-core/0.9.2-incubating

You should now be able to change your project.clj to include a reference to this new release.

Once you change that, you can run:

lein deps :tree | grep storm

To confirm it is using the upgraded Clojure 1.5.1 (changed in 0.9.2), run:

lein repl

32 Chapter 4. Developing Streamparse

CHAPTER 5

Frequently Asked Questions (FAQ)

5.1 General Questions

• Why use streamparse?

• Is streamparse compatible with Python 3?

• How can I contribute to streamparse?

• How do I trigger some code before or after I submit my topology?

• How should I install streamparse on the cluster nodes?

• Should I install Clojure?

5.1.1 Why use streamparse?

To lay your Python code out in topologies which can be automatically parallelized in a Storm cluster of machines. This
lets you scale your computation horizontally and avoid issues related to Python’s GIL. See Parallelism and Workers.

5.1.2 Is streamparse compatible with Python 3?

Yes, streamparse is fully compatible with Python 3 starting with version 3.3 which we use in our unit tests.

5.1.3 How can I contribute to streamparse?

Thanks for your interest in contributing to streamparse. We think you’ll find the core maintainers great to work with
and will help you along the way when contributing pull requests.

If you already know what you’d like to add to streamparse then by all means, feel free to submit a pull request and
we’ll review it.

If you’re unsure about how to contribute, check out our open issues and find one that looks interesting to you (we
particularly need help on all issues marked with the “help wanted” label).

If you’re not sure how to start or have some questions, shoot us an email in the streamparse user group and we’ll give
you a hand.

From there, get to work on your fix and submit a pull request when ready which we’ll review.

33

https://github.com/Parsely/streamparse/blob/master/.travis.yml
https://github.com/Parsely/streamparse/issues?state=open
https://groups.google.com/forum/#!forum/streamparse

streamparse Documentation, Release 2.1.3

5.1.4 How do I trigger some code before or after I submit my topology?

After you create a streamparse project using sparse quickstart, you’ll have both a tasks.py in that directory
as well as fabric.py. In either of these files, you can specify two functions: pre_submit and post_submit
which are expected to accept three arguments:

• topology_name: the name of the topology being submitted

• env_name: the name of the environment where the topology is being submitted (e.g. "prod")

• env_config: the relevant config portion from the config.json file for the environment you are submitting
the topology to

Here is a sample tasks.py file that sends a message to IRC after a topology is successfully submitted to prod.

my_project/tasks.py
from __future__ import absolute_import, print_function, unicode_literals

from invoke import task, run
from streamparse.ext.invoke import *

def post_submit(topo_name, env_name, env_config):
if env_name == "prod":

write_to_irc("Deployed {} to {}".format(topo_name, env_name))

5.1.5 How should I install streamparse on the cluster nodes?

streamparse assumes your Storm servers have Python, pip, and virtualenv installed. After that, the installation of all
required dependencies (including streamparse itself) is taken care of via the config.json file for the streamparse project
and the sparse submit command. See Remote Deployment for more information.

5.1.6 Should I install Clojure?

No, the Java requirements for streamparse are identical to that of Storm itself. Storm requires Java and bundles Clojure
as a requirement, so you do not need to do any separate installation of Clojure. You just need Java on all Storm servers.

5.2 Errors While Running streamparse

• I received an “InvalidClassException” while submitting my topology, what do I do?

5.2.1 I received an “InvalidClassException” while submitting my topology, what do
I do?

If the Storm version dependency you specify in your project.clj file is different from the version of Storm
running on your cluster, you’ll get an error in Storm’s logs that looks something like the following when you submit
your topology:

2014-07-07 02:30:27 b.s.d.executor [INFO] Finished loading executor __acker:[2 2]
2014-07-07 02:30:27 b.s.d.executor [INFO] Preparing bolt __acker:(2)
2014-07-07 02:30:27 b.s.d.executor [INFO] Prepared bolt __acker:(2)
2014-07-07 02:30:27 b.s.d.executor [INFO] Loading executor count-bolt:[4 4]
2014-07-07 02:30:27 b.s.d.worker [ERROR] Error on initialization of server mk-worker

34 Chapter 5. Frequently Asked Questions (FAQ)

https://github.com/apache/storm/blob/5383ac375cb2955e3247d485e46f1f58bff62810/pom.xml#L320-L322
https://github.com/apache/storm/blob/5383ac375cb2955e3247d485e46f1f58bff62810/pom.xml#L320-L322

streamparse Documentation, Release 2.1.3

java.lang.RuntimeException: java.io.InvalidClassException: backtype.storm.task.ShellBolt; local class incompatible: stream classdesc serialVersionUID = 7728860535733323638, local class serialVersionUID = -6826504627767683830
at backtype.storm.utils.Utils.deserialize(Utils.java:93) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.utils.Utils.getSetComponentObject(Utils.java:235) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.daemon.task$get_task_object.invoke(task.clj:73) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.daemon.taskmk_task_datafn__3061.invoke(task.clj:180) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.util$assoc_apply_self.invoke(util.clj:816) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.daemon.task$mk_task_data.invoke(task.clj:173) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.daemon.task$mk_task.invoke(task.clj:184) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at backtype.storm.daemon.executor$mk_executor$fn__5510.invoke(executor.clj:321) ~[storm-core-0.9.2-incubating.jar:0.9.2-incubating]
at clojure.coremapfn__4207.invoke(core.clj:2485) ~[clojure-1.5.1.jar:na]

Check to ensure the version of Storm in your project.clj file matches the Storm version running on your cluster,
then try resubmitting your topology.

(defproject my-project "0.0.1-SNAPSHOT"
:source-paths ["topologies"]
:resource-paths ["_resources"]
:target-path "_build"
:min-lein-version "2.0.0"
:jvm-opts ["-client"]
:dependencies [[org.apache.storm/storm-core "0.9.4"] ;; this should match your Storm cluster

[com.parsely/streamparse "0.0.4-SNAPSHOT"]]
:jar-exclusions [#"log4j\.properties" #"backtype" #"trident" #"META-INF" #"meta-inf" #"\.yaml"]
:uberjar-exclusions [#"log4j\.properties" #"backtype" #"trident" #"META-INF" #"meta-inf" #"\.yaml"]

)

5.2. Errors While Running streamparse 35

streamparse Documentation, Release 2.1.3

36 Chapter 5. Frequently Asked Questions (FAQ)

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

37

streamparse Documentation, Release 2.1.3

38 Chapter 6. Indices and tables

Index

A
ack() (streamparse.storm.bolt.BatchingBolt method), 28
ack() (streamparse.storm.bolt.Bolt method), 24
ack() (streamparse.storm.spout.Spout method), 22

B
BatchingBolt (class in streamparse.storm.bolt), 27
Bolt (class in streamparse.storm.bolt), 24

C
Component (class in streamparse.storm.component), 19

E
emit() (streamparse.storm.bolt.BatchingBolt method), 28
emit() (streamparse.storm.bolt.Bolt method), 25
emit() (streamparse.storm.component.Component

method), 20
emit() (streamparse.storm.spout.Spout method), 22
emit_many() (streamparse.storm.bolt.BatchingBolt

method), 28
emit_many() (streamparse.storm.bolt.Bolt method), 25
emit_many() (streamparse.storm.spout.Spout method), 22

F
fail() (streamparse.storm.bolt.BatchingBolt method), 28
fail() (streamparse.storm.bolt.Bolt method), 25
fail() (streamparse.storm.spout.Spout method), 22

G
group_key() (streamparse.storm.bolt.BatchingBolt

method), 28

I
initialize() (streamparse.storm.bolt.BatchingBolt

method), 28
initialize() (streamparse.storm.bolt.Bolt method), 25
initialize() (streamparse.storm.spout.Spout method), 23
is_heartbeat() (streamparse.storm.bolt.BatchingBolt

method), 29
is_heartbeat() (streamparse.storm.bolt.Bolt method), 26

is_heartbeat() (streamparse.storm.component.Component
static method), 20

is_heartbeat() (streamparse.storm.spout.Spout method),
23

is_tick() (streamparse.storm.bolt.BatchingBolt method),
29

is_tick() (streamparse.storm.bolt.Bolt static method), 26

L
log() (streamparse.storm.bolt.BatchingBolt method), 29
log() (streamparse.storm.bolt.Bolt method), 26
log() (streamparse.storm.component.Component

method), 20
log() (streamparse.storm.spout.Spout method), 23

N
next_tuple() (streamparse.storm.spout.Spout method), 23

P
process() (streamparse.storm.bolt.BatchingBolt method),

29
process() (streamparse.storm.bolt.Bolt method), 26
process_batch() (streamparse.storm.bolt.BatchingBolt

method), 29
process_batches() (streamparse.storm.bolt.BatchingBolt

method), 29
process_tick() (streamparse.storm.bolt.BatchingBolt

method), 29
process_tick() (streamparse.storm.bolt.Bolt method), 26

R
raise_exception() (streamparse.storm.bolt.BatchingBolt

method), 30
raise_exception() (streamparse.storm.bolt.Bolt method),

26
raise_exception() (stream-

parse.storm.component.Component method),
21

raise_exception() (streamparse.storm.spout.Spout
method), 23

39

streamparse Documentation, Release 2.1.3

read_handshake() (streamparse.storm.bolt.BatchingBolt
method), 30

read_handshake() (streamparse.storm.bolt.Bolt method),
26

read_handshake() (stream-
parse.storm.component.Component method),
21

read_handshake() (streamparse.storm.spout.Spout
method), 23

read_message() (streamparse.storm.bolt.BatchingBolt
method), 30

read_message() (streamparse.storm.bolt.Bolt method), 26
read_message() (stream-

parse.storm.component.Component method),
21

read_message() (streamparse.storm.spout.Spout method),
23

run() (streamparse.storm.bolt.BatchingBolt method), 30
run() (streamparse.storm.bolt.Bolt method), 27
run() (streamparse.storm.component.Component

method), 21
run() (streamparse.storm.spout.Spout method), 24

S
send_message() (streamparse.storm.bolt.BatchingBolt

method), 30
send_message() (streamparse.storm.bolt.Bolt method), 27
send_message() (stream-

parse.storm.component.Component method),
21

send_message() (streamparse.storm.spout.Spout method),
24

Spout (class in streamparse.storm.spout), 22

T
Tuple (class in streamparse.storm.component), 19

40 Index

	Quickstart
	Dependencies
	Your First Project
	Project Structure
	Defining Topologies
	Spouts and Bolts
	Remote Deployment

	Topologies
	Clojure Quick Reference Guide
	Topology Files
	Shell Spouts and Bolts
	Python Spouts and Bolts
	Running Topologies
	Parallelism and Workers

	API
	Tuples
	Components

	Developing Streamparse
	Lein
	Using Local Clojure Interop Library
	Local pip installation
	Installing Storm pre-releases

	Frequently Asked Questions (FAQ)
	General Questions
	Errors While Running streamparse

	Indices and tables

