

[image: logo] 4.1.2

streamparse lets you run Python code against real-time streams of data.
Integrates with Apache Storm.

[image: _images/streamparse.svg]
 [https://travis-ci.org/Parsely/streamparse]

	Quickstart

	Topologies

	API

	Developing Streamparse

	Frequently Asked Questions (FAQ)

[image: _images/quickstart.gif]

 Quickstart

Quickstart

Dependencies

Java and Clojure

To run local and remote computation clusters, streamparse relies upon a JVM
technology called Apache Storm. The integration with this technology is
lightweight, and for the most part, you don’t need to think about it.

However, to get the library running, you’ll need

	JDK 7+, which you can install with apt-get, homebrew, or an installler;
and

	lein, which you can install from the
Leiningen project page [http://leiningen.org/] or
github [https://github.com/technomancy/leiningen#leiningen]

	Apache Storm development environment, which you can install from the
Storm project page [http://storm.apache.org/releases/current/Setting-up-development-environment.html]

You will need to have at least Apache Storm version 0.10.0 to cooperate with Streamparse.

Confirm that you have lein installed by running:

> lein version

You should get output similar to this:

Leiningen 2.3.4 on Java 1.7.0_55 Java HotSpot(TM) 64-Bit Server VM

Confirm that you have storm installed by running:

> storm version

You should get output similar to this:

Running: java -client -Ddaemon.name= -Dstorm.options= -Dstorm.home=/opt/apache-storm-1.0.1 -Dstorm.log.dir=/opt/apache-storm-1.0.1/logs -Djava.library.path=/usr/local/lib:/opt/local/lib:/usr/lib -Dstorm.conf.file= -cp /opt/apache-storm-1.0.1/lib/reflectasm-1.10.1.jar:/opt/apache-storm-1.0.1/lib/kryo-3.0.3.jar:/opt/apache-storm-1.0.1/lib/log4j-over-slf4j-1.6.6.jar:/opt/apache-storm-1.0.1/lib/clojure-1.7.0.jar:/opt/apache-storm-1.0.1/lib/log4j-slf4j-impl-2.1.jar:/opt/apache-storm-1.0.1/lib/servlet-api-2.5.jar:/opt/apache-storm-1.0.1/lib/disruptor-3.3.2.jar:/opt/apache-storm-1.0.1/lib/objenesis-2.1.jar:/opt/apache-storm-1.0.1/lib/storm-core-1.0.1.jar:/opt/apache-storm-1.0.1/lib/slf4j-api-1.7.7.jar:/opt/apache-storm-1.0.1/lib/storm-rename-hack-1.0.1.jar:/opt/apache-storm-1.0.1/lib/log4j-api-2.1.jar:/opt/apache-storm-1.0.1/lib/log4j-core-2.1.jar:/opt/apache-storm-1.0.1/lib/minlog-1.3.0.jar:/opt/apache-storm-1.0.1/lib/asm-5.0.3.jar:/opt/apache-storm-1.0.1/conf org.apache.storm.utils.VersionInfo
Storm 1.0.1
URL https://git-wip-us.apache.org/repos/asf/storm.git -r b5c16f919ad4099e6fb25f1095c9af8b64ac9f91
Branch (no branch)
Compiled by tgoetz on 2016-04-29T20:44Z
From source with checksum 1aea9df01b9181773125826339b9587e

	If lein isn’t installed,

	follow these directions to install it [http://leiningen.org/#install].

If storm isn’t installed,
follow these directions [http://storm.apache.org/releases/current/Setting-up-development-environment.html].

Once that’s all set, you install streamparse using pip:

> pip install streamparse

Your First Project

When working with streamparse, your first step is to create a project using
the command-line tool, sparse:

> sparse quickstart wordcount

Creating your wordcount streamparse project...
 create wordcount
 create wordcount/.gitignore
 create wordcount/config.json
 create wordcount/fabfile.py
 create wordcount/project.clj
 create wordcount/README.md
 create wordcount/src
 create wordcount/src/bolts/
 create wordcount/src/bolts/__init__.py
 create wordcount/src/bolts/wordcount.py
 create wordcount/src/spouts/
 create wordcount/src/spouts/__init__.py
 create wordcount/src/spouts/words.py
 create wordcount/topologies
 create wordcount/topologies/wordcount.py
 create wordcount/virtualenvs
 create wordcount/virtualenvs/wordcount.txt
Done.

Try running your topology locally with:

> cd wordcount
 sparse run

The quickstart project provides a basic wordcount topology example which you
can examine and modify. You can inspect the other commands that sparse
provides by running:

> sparse -h

If you see an error like:

Local Storm version, 1.0.1, is not the same as the version in your project.clj, 0.10.0. The versions must match.

You will have to edit your wordcount/project.clj file and change Apache Storm library version to match the one you have installed.

Project Structure

streamparse projects expect to have the following directory layout:

	File/Folder

	Contents

	config.json

	Configuration information for all of your topologies.

	fabfile.py

	Optional custom fabric tasks.

	project.clj

	leiningen project file (can be used to add external JVM dependencies).

	src/

	Python source files (bolts/spouts/etc.) for topologies.

	tasks.py

	Optional custom invoke tasks.

	topologies/

	Contains topology definitions written using the Topology DSL.

	virtualenvs/

	Contains pip requirements files used to install dependencies on remote Storm servers.

Defining Topologies

Storm’s services are Thrift-based and although it is possible to define a
topology in pure Python using Thrift. For details see Topology DSL.

Let’s have a look at the definition file created by using the
sparse quickstart command.

"""
Word count topology
"""

from streamparse import Grouping, Topology

from bolts.wordcount import WordCountBolt
from spouts.words import WordSpout

class WordCount(Topology):
 word_spout = WordSpout.spec()
 count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields("word")}, par=2)

In the count_bolt bolt, we’ve told Storm that we’d like the stream of
input tuples to be grouped by the named field word. Storm offers
comprehensive options for
stream groupings [http://storm.apache.org/documentation/Concepts.html#stream-groupings],
but you will most commonly use a shuffle or fields grouping:

	Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks
in a way such that each bolt is guaranteed to get an equal number of tuples.
This is the default grouping if no other is specified.

	Fields grouping: The stream is partitioned by the fields specified in the
grouping. For example, if the stream is grouped by the “user-id” field,
tuples with the same “user-id” will always go to the same task, but tuples
with different “user-id”’s may go to different tasks.

There are more options to configure with spouts and bolts, we’d encourage you
to refer to our Topology DSL docs or
Storm’s Concepts [http://storm.apache.org/documentation/Concepts.html] for
more information.

Spouts and Bolts

The general flow for creating new spouts and bolts using streamparse is to add
them to your src folder and update the corresponding topology definition.

Let’s create a spout that emits sentences until the end of time:

import itertools

from streamparse.spout import Spout

class SentenceSpout(Spout):
 outputs = ['sentence']

 def initialize(self, stormconf, context):
 self.sentences = [
 "She advised him to take a long holiday, so he immediately quit work and took a trip around the world",
 "I was very glad to get a present from her",
 "He will be here in half an hour",
 "She saw him eating a sandwich",
]
 self.sentences = itertools.cycle(self.sentences)

 def next_tuple(self):
 sentence = next(self.sentences)
 self.emit([sentence])

 def ack(self, tup_id):
 pass # if a tuple is processed properly, do nothing

 def fail(self, tup_id):
 pass # if a tuple fails to process, do nothing

The magic in the code above happens in the initialize() and
next_tuple() functions. Once the spout enters the main run loop,
streamparse will call your spout’s initialize() method.
After initialization is complete, streamparse will continually call the spout’s
next_tuple() method where you’re expected to emit tuples that match
whatever you’ve defined in your topology definition.

Now let’s create a bolt that takes in sentences, and spits out words:

import re

from streamparse.bolt import Bolt

class SentenceSplitterBolt(Bolt):
 outputs = ['word']

 def process(self, tup):
 sentence = tup.values[0] # extract the sentence
 sentence = re.sub(r"[,.;!\?]", "", sentence) # get rid of punctuation
 words = [[word.strip()] for word in sentence.split(" ") if word.strip()]
 if not words:
 # no words to process in the sentence, fail the tuple
 self.fail(tup)
 return

 for word in words:
 self.emit([word])
 # tuple acknowledgement is handled automatically

The bolt implementation is even simpler. We simply override the default
process() method which streamparse calls when a tuple has been emitted by
an incoming spout or bolt. You are welcome to do whatever processing you would
like in this method and can further emit tuples or not depending on the purpose
of your bolt.

If your process() method completes without raising an Exception, streamparse
will automatically ensure any emits you have are anchored to the current tuple
being processed and acknowledged after process() completes.

If an Exception is raised while process() is called, streamparse
automatically fails the current tuple prior to killing the Python process.

Failed Tuples

In the example above, we added the ability to fail a sentence tuple if it did
not provide any words. What happens when we fail a tuple? Storm will send a
“fail” message back to the spout where the tuple originated from (in this case
SentenceSpout) and streamparse calls the spout’s
fail() method. It’s then up to your spout
implementation to decide what to do. A spout could retry a failed tuple, send
an error message, or kill the topology. See Dealing With Errors for
more discussion.

Bolt Configuration Options

You can disable the automatic acknowleding, anchoring or failing of tuples by
adding class variables set to false for: auto_ack, auto_anchor or
auto_fail. All three options are documented in
streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

 auto_ack = False
 auto_fail = False

 def process(self, tup):
 # do stuff...
 if error:
 self.fail(tup) # perform failure manually
 self.ack(tup) # perform acknowledgement manually

Handling Tick Tuples

Ticks tuples are built into Storm to provide some simple forms of
cron-like behaviour without actually having to use cron. You can
receive and react to tick tuples as timer events with your python
bolts using streamparse too.

The first step is to override process_tick() in your custom
Bolt class. Once this is overridden, you can set the storm option
topology.tick.tuple.freq.secs=<frequency> to cause a tick tuple
to be emitted every <frequency> seconds.

You can see the full docs for process_tick() in
streamparse.bolt.Bolt.

Example:

from streamparse.bolt import Bolt

class MyBolt(Bolt):

 def process_tick(self, freq):
 # An action we want to perform at some regular interval...
 self.flush_old_state()

Then, for example, to cause process_tick() to be called every
2 seconds on all of your bolts that override it, you can launch
your topology under sparse run by setting the appropriate -o
option and value as in the following example:

$ sparse run -o "topology.tick.tuple.freq.secs=2" ...

Remote Deployment

Setting up a Storm Cluster

See Storm’s Setting up a Storm Cluster [https://storm.apache.org/documentation/Setting-up-a-Storm-cluster.html].

Submit

When you are satisfied that your topology works well via testing with:

> sparse run -d

You can submit your topology to a remote Storm cluster using the command:

sparse submit [--environment <env>] [--name <topology>] [-dv]

Before submitting, you have to have at least one environment configured in your
project’s config.json file. Let’s create a sample environment called “prod”
in our config.json file:

{
 "serializer": "json",
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "prod": {
 "user": "storm",
 "nimbus": "storm1.my-cluster.com",
 "workers": [
 "storm1.my-cluster.com",
 "storm2.my-cluster.com",
 "storm3.my-cluster.com"
],
 "log": {
 "path": "/var/log/storm/streamparse",
 "file": "pystorm_{topology_name}_{component_name}_{task_id}_{pid}.log",
 "max_bytes": 100000,
 "backup_count": 10,
 "level": "info"
 },
 "use_ssh_for_nimbus": true,
 "virtualenv_root": "/data/virtualenvs/"
 }
 }
}

We’ve now defined a prod environment that will use the user storm when
deploying topologies. Before submitting the topology though, streamparse will
automatically take care of instaling all the dependencies your topology
requires. It does this by sshing into everyone of the nodes in the workers
config variable and building a virtualenv using the the project’s local
virtualenvs/<topology_name>.txt requirements file.

This implies a few requirements about the user you specify per environment:

	Must have ssh access to all servers in your Storm cluster

	Must have write access to the virtualenv_root on all servers in your
Storm cluster

If you would like to use your system user for creating the SSH connection to
the Storm cluster, you can omit the user setting from your config.json.

By default the root user is used for creating virtualenvs when you do not
specify a user in your config.json. To override this, set the
sudo_user option in your config.json. sudo_user will default to
user if one is specified.

streamparse also assumes that virtualenv is installed on all Storm servers.

Once an environment is configured, we could deploy our wordcount topology like
so:

> sparse submit

Seeing as we have only one topology and environment, we don’t need to specify
these explicitly. streamparse will now:

	Package up a JAR containing all your Python source files

	Build a virtualenv on all your Storm workers (in parallel)

	Submit the topology to the nimbus server

Disabling & Configuring Virtualenv Creation

If you do not have ssh access to all of the servers in your Storm cluster, but
you know they have all of the requirements for your Python code installed, you
can set "use_virtualenv" to false in config.json.

If you have virtualenvs on your machines that you would like streamparse to
use, but not update or manage, you can set "install_virtualenv" to false
in config.json.

If you would like to pass command-line flags to virtualenv, you can set
"virtualenv_flags" in config.json, for example:

"virtualenv_flags": "-p /path/to/python"

Note that this only applies when the virtualenv is created, not when an
existing virtualenv is used.

If you would like to share a single virtualenv across topologies, you can set
"virtualenv_name" in config.json which overrides the default behaviour
of using the topology name for virtualenv. Updates to a shared virtualenv should
be done after shutting down topologies, as code changes in running topologies
may cause errors.

Using unofficial versions of Storm

If you wish to use streamparse with unofficial versions of storm (such as the HDP Storm)
you should set :repositories in your project.clj to point to the Maven repository
containing the JAR you want to use, and set the version in :dependencies to match
the desired version of Storm.

For example, to use the version supplied by HDP, you would set :repositories to:

:repositories {"HDP Releases" "http://repo.hortonworks.com/content/repositories/releases"}

Local Clusters

Streamparse assumes that your Storm cluster is not on your local machine. If it
is, such as the case with VMs or Docker images, change "use_ssh_for_nimbus"
in config.json to false.

Setting Submit Options in config.json

If you frequently use the same options to sparse submit in your project, you
can set them in config.json using the options key in your environment
settings. For example:

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "vagrant": {
 "user": "vagrant",
 "nimbus": "streamparse-box",
 "workers": [
 "streamparse-box"
],
 "virtualenv_root": "/data/virtualenvs",
 "options": {
 "topology.environment": {
 "LD_LIBRARY_PATH": "/usr/local/lib/"
 }
 }
 }
 }
}

You can also set the --worker and --acker parameters in config.json
via the worker_count and acker_count keys in your environment settings.

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "vagrant": {
 "user": "vagrant",
 "nimbus": "streamparse-box",
 "workers": [
 "streamparse-box"
],
 "virtualenv_root": "/data/virtualenvs",
 "acker_count": 1,
 "worker_count": 1
 }
 }
}

Logging

The Storm supervisor needs to have access to the log.path directory for
logging to work (in the example above, /var/log/storm/streamparse). If you
have properly configured the log.path option in your config, streamparse
will use the value for the log.file option to set up log files for each
Storm worker in this path. The filename can be customized further by using
certain named placeholders. The default filename is set to:

pystorm_{topology_name}_{component_name}_{task_id}_{pid}.log

Where:

	topology_name: is the topology.name variable set in Storm

	component_name: is the name of the currently executing component as defined in your topology definition file (.clj file)

	task_id: is the task ID running this component in the topology

	pid: is the process ID of the Python process

streamparse uses Python’s logging.handlers.RotatingFileHandler and by
default will only save 10 1 MB log files (10 MB in total), but this can be
tuned with the log.max_bytes and log.backup_count variables.

The default logging level is set to INFO, but if you can tune this with the
log.level setting which can be one of critical, error, warning, info or
debug. Note that if you perform sparse run or sparse submit with
the --debug set, this will override your log.level setting and set the
log level to debug.

When running your topology locally via sparse run, your log path will be
automatically set to /path/to/your/streamparse/project/logs.

 Topologies

New in version 3.0.0.

Topologies

Storm topologies are described as a Directed Acyclic Graph (DAG) of Storm
components, namely bolts and spouts.

Topology DSL

To simplify the process of creating Storm topologies, streamparse features a
Python Topology DSL [https://en.wikipedia.org/wiki/Domain-specific_language].
It lets you specify topologies as complex as those you can in Java [https://github.com/apache/storm/blob/07629c1f898ebb0cedcc19e15e4813692b6a9345/examples/storm-starter/src/jvm/org/apache/storm/starter/WordCountTopology.java]
or Clojure [https://github.com/apache/storm/blob/07629c1f898ebb0cedcc19e15e4813692b6a9345/examples/storm-starter/src/clj/org/apache/storm/starter/clj/word_count.clj],
but in concise, readable Python.

Topology files are located in topologies in your streamparse project folder.
There can be any number of topology files for your project in this directory.

	topologies/my_topology.py

	topologies/my_other_topology.py

	topologies/my_third_topology.py

	…

A valid Topology may only have Bolt
and Spout attributes.

Simple Python Example

The first step to putting together a topology, is creating the bolts and spouts,
so let’s assume we have the following bolt and spout:

from collections import Counter

from redis import StrictRedis

from streamparse import Bolt

class WordCountBolt(Bolt):
 outputs = ["word", "count"]

 def initialize(self, conf, ctx):
 self.counter = Counter()
 self.total = 0

 def _increment(self, word, inc_by):
 self.counter[word] += inc_by
 self.total += inc_by

 def process(self, tup):
 word = tup.values[0]
 self._increment(word, 10 if word == "dog" else 1)
 if self.total % 1000 == 0:
 self.logger.info("counted %i words", self.total)
 self.emit([word, self.counter[word]])

class RedisWordCountBolt(Bolt):
 outputs = ["word", "count"]

from itertools import cycle

from streamparse import Spout

class WordSpout(Spout):
 outputs = ["word"]

 def initialize(self, stormconf, context):
 self.words = cycle(["dog", "cat", "zebra", "elephant"])

 def next_tuple(self):
 word = next(self.words)
 self.emit([word])

One important thing to note is that we have added an outputs attribute to
these classes, which specify the names of the output fields that will be
produced on their default streams. If we wanted to specify multiple
streams, we could do that by specifying a list of Stream
objects.

Now let’s hook up the bolt to read from the spout:

"""
Word count topology (in memory)
"""

from bolts import WordCountBolt
from spouts import WordSpout
from streamparse import Grouping, Topology

class WordCount(Topology):
 word_spout = WordSpout.spec()
 count_bolt = WordCountBolt.spec(inputs={word_spout: Grouping.fields("word")}, par=2)

Note

Your project’s src directory gets added to sys.path before your
topology is imported, so you should use absolute imports based on that.

 API

API

Tuples

You should never have to instantiate an instance of a
streamparse.Tuple yourself as streamparse handles this for you
prior to, for example, a streamparse.Bolt’s process() method
being called.

None of the emit methods for bolts or spouts require that you pass a
streamparse.Tuple instance.

Components

Both streamparse.Bolt and streamparse.Spout inherit from a
common base-class, streamparse.storm.component.Component. It extends
pystorm’s code for handling Multi-Lang IPC between Storm and Python [https://storm.apache.org/documentation/Multilang-protocol.html]
and adds suport for our Python Topology DSL.

Spouts

Spouts are data sources for topologies, they can read from any data source and
emit tuples into streams.

Bolts

Logging

Topology DSL

 Developing Streamparse

Developing Streamparse

Lein

Install Leiningen according to the instructions in the quickstart.

Local pip installation

In your virtualenv for this project, go into ~/repos/streamparse (where you
cloned streamparse) and simply run:

python setup.py develop

This will install a streamparse Python version into the virtualenv which is
essentially symlinked to your local version.

NOTE: streamparse currently pip installs streamparse’s released version
on remote clusters automatically. Therefore, though this will work for local
development, you’ll need to push streamparse somewhere pip installable (or
change requirements.txt) to make it pick up that version on a remote cluster.

Installing Storm pre-releases

You can clone Storm from Github here:

git clone git@github.com:apache/storm.git

There are tags available for releases, e.g.:

git checkout v1.0.1

To build a local Storm release, use:

mvn install
cd storm-dist/binary
mvn package

These steps will take awhile as they also run Storm’s internal unit and
integration tests.

The first line will actually install Storm locally in your maven (.m2)
repository. You can confirm this with:

ls ~/.m2/repository/org/apache/storm/storm-core/1.0.1

You should now be able to change your project.clj to include a reference to
this new release.

Once you change that, you can run:

lein deps :tree | grep storm

To confirm it is using the upgraded Clojure 1.5.1 (changed in 0.9.2), run:

lein repl

 Frequently Asked Questions (FAQ)

Frequently Asked Questions (FAQ)

General Questions

	Why use streamparse?

	Is streamparse compatible with Python 3?

	How can I contribute to streamparse?

	How do I trigger some code before or after I submit my topology?

	How should I install streamparse on the cluster nodes?

	Should I install Clojure?

	How do I deploy into a VPC?

	How do I override SSH settings?

	How do I dynamically generate the worker list?

Why use streamparse?

To lay your Python code out in topologies which can be automatically
parallelized in a Storm cluster of machines. This lets you scale your
computation horizontally and avoid issues related to Python’s GIL. See
Parallelism and Workers.

Is streamparse compatible with Python 3?

Yes, streamparse is fully compatible with Python 3 starting with version 3.3
which we use in our unit tests [https://github.com/Parsely/streamparse/blob/master/.travis.yml].

How can I contribute to streamparse?

Please see the CONTRIBUTING [https://github.com/Parsely/streamparse/blob/master/CONTRIBUTING.rst] document in Github

How do I trigger some code before or after I submit my topology?

After you create a streamparse project using sparse quickstart, you’ll have
a fabfile.py in that directory. In that file, you can specify two
functions (pre_submit and post_submit) which are expected to accept four arguments:

	topology_name: the name of the topology being submitted

	env_name: the name of the environment where the topology is being
submitted (e.g. "prod")

	env_config: the relevant config portion from the config.json file for
the environment you are submitting the topology to

	options: the fully resolved Storm options

Here is a sample fabfile.py file that sends a message to IRC after a
topology is successfully submitted to prod.

my_project/fabfile.py
from __future__ import absolute_import, print_function, unicode_literals

from my_project import write_to_irc

def post_submit(topo_name, env_name, env_config):
 if env_name == "prod":
 write_to_irc("Deployed {} to {}".format(topo_name, env_name))

How should I install streamparse on the cluster nodes?

streamparse assumes your Storm servers have Python, pip, and virtualenv
installed. After that, the installation of all required dependencies (including
streamparse itself) is taken care of via the config.json file for the
streamparse project and the sparse submit command.

Should I install Clojure?

No, the Java requirements for streamparse are identical to that of Storm itself.
Storm requires Java and bundles Clojure as a requirement [https://github.com/apache/storm/blob/5383ac375cb2955e3247d485e46f1f58bff62810/pom.xml#L320-L322], so you do not need
to do any separate installation of Clojure. You just need Java on all Storm
servers.

How do I deploy into a VPC?

Update your ~/.ssh/config to use a bastion host inside your VPC for your
commands:

Host *.internal.example.com
 ProxyCommand ssh bastion.example.com exec nc %h %p

If you don’t have a common subdomain you’ll have to list all of the hosts
individually:

Host host1.example.com
 ProxyCommand ssh bastion.example.com exec nc %h %p
...

Set up your streamparse config to use all of the hosts normally (without bastion
host).

How do I override SSH settings?

It is highly recommended that you just modify your ~/.ssh/config file if you
need to tweak settings for setting up the SSH tunnel to your Nimbus server, but
you can also set your SSH password or port in your config.json by setting
the ssh_password or ssh_port environment settings.

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "prod": {
 "user": "somebody",
 "ssh_password": "THIS IS A REALLY BAD IDEA",
 "ssh_port": 52,
 "nimbus": "streamparse-box",
 "workers": [
 "streamparse-box"
],
 "virtualenv_root": "/data/virtualenvs"
 }
 }
}

How do I dynamically generate the worker list?

In a small cluster it’s sufficient to specify the list of workers in config.json.
However, if you have a large or complex environment where workers are numerous
or short-lived, streamparse supports querying the nimbus server for a list of hosts.

An undefined list (empty or None) of workers will trigger the lookup.
Explicitly defined hosts are preferred over a lookup.

Lookups are configured on a per-environment basis, so the prod environment
below uses the dynamic lookup, while beta will not.

{
 "topology_specs": "topologies/",
 "virtualenv_specs": "virtualenvs/",
 "envs": {
 "prod": {
 "nimbus": "streamparse-prod",
 "virtualenv_root": "/data/virtualenvs"
 },
 "beta": {
 "nimbus": "streamparse-beta",
 "workers": [
 "streamparse-beta"
],
 "virtualenv_root": "/data/virtualenvs"
 }
 }
}

 Index

Index

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/quickstart.gif
Terminal @S EYG e, 29 Ty @) wedMay 7 705 AM L

CHANGES . md examples README . nd streamparse. egg-info
DEVELOP. md LICENSE requirements. txt tasks.py
dev-requirements. txt MANIFEST.in setup.cfg test

» [master]

byzanz-record -d 20
usage: byzanz-record [OPTIONS] filename
byzanz-record --help

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

AC

5 [master]
byzanz-record -d 20 screencast. gif

5 [master]
byzanz-record -d 35 screencast. gif

AC

5 [master]
byzanz-record -d 35 screencast. gif

AC

5 [master]

byzanz-record -d 35 screencast. gif

torn- EETTSRE

_images/streamparse-logo.png
-
(3 streamparse
@

_static/plus.png

nav.xhtml

 Table of Contents

 		
 4.1.2

 		
 Quickstart

 		
 Dependencies

 		
 Java and Clojure

 		
 Your First Project

 		
 Project Structure

 		
 Defining Topologies

 		
 Spouts and Bolts

 		
 Failed Tuples

 		
 Bolt Configuration Options

 		
 Handling Tick Tuples

 		
 Remote Deployment

 		
 Setting up a Storm Cluster

 		
 Submit

 		
 Disabling & Configuring Virtualenv Creation

 		
 Using unofficial versions of Storm

 		
 Local Clusters

 		
 Setting Submit Options in config.json

 		
 Logging

 		
 Topologies

 		
 Topology DSL

 		
 Simple Python Example

 		
 Java Components

 		
 Components in Other Languages

 		
 Multiple Streams

 		
 Groupings

 		
 Topology Cycles

 		
 Topology-Level Configuration

 		
 Running Topologies

 		
 What Streamparse Does

 		
 Dealing With Errors

 		
 Parallelism and Workers

 		
 API

 		
 Tuples

 		
 Components

 		
 Spouts

 		
 Bolts

 		
 Logging

 		
 Topology DSL

 		
 Developing Streamparse

 		
 Lein

 		
 Local pip installation

 		
 Installing Storm pre-releases

 		
 Frequently Asked Questions (FAQ)

 		
 General Questions

 		
 Why use streamparse?

 		
 Is streamparse compatible with Python 3?

